• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/io
      • Std/osets
      • Std/system
      • Std/basic
      • Std/typed-lists
      • Std/bitsets
      • Std/testing
      • Std/typed-alists
        • Symbol-symbol-alistp
        • String-string-alistp
        • Symbol-string-alistp
        • Symbol-pseudoterm-alistp
        • String-symbollist-alistp
        • Symbol-pos-alistp
        • Cons-pos-alistp
          • Symbol-symbollist-alistp
          • Symbol-truelist-alistp
          • Keyword-symbol-alistp
          • String-stringlist-alistp
          • Keyword-truelist-alistp
          • Symbol-nat-alistp
          • String-symbol-alistp
          • Keyword-to-keyword-value-list-alistp
          • Std/typed-alists/symbol-alistp
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/typed-alists

    Cons-pos-alistp

    Recognize alists from cons pairs to positive integers.

    This is an ordinary std::defalist.

    Function: cons-pos-alistp

    (defun cons-pos-alistp (x)
           (declare (xargs :guard t))
           (if (consp x)
               (and (consp (car x))
                    (consp (caar x))
                    (posp (cdar x))
                    (cons-pos-alistp (cdr x)))
               (null x)))

    Definitions and Theorems

    Function: cons-pos-alistp

    (defun cons-pos-alistp (x)
           (declare (xargs :guard t))
           (if (consp x)
               (and (consp (car x))
                    (consp (caar x))
                    (posp (cdar x))
                    (cons-pos-alistp (cdr x)))
               (null x)))

    Theorem: cons-pos-alistp-of-revappend

    (defthm cons-pos-alistp-of-revappend
            (equal (cons-pos-alistp (revappend x y))
                   (and (cons-pos-alistp (list-fix x))
                        (cons-pos-alistp y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-remove

    (defthm cons-pos-alistp-of-remove
            (implies (cons-pos-alistp x)
                     (cons-pos-alistp (remove a x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-last

    (defthm cons-pos-alistp-of-last
            (implies (cons-pos-alistp (double-rewrite x))
                     (cons-pos-alistp (last x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-nthcdr

    (defthm cons-pos-alistp-of-nthcdr
            (implies (cons-pos-alistp (double-rewrite x))
                     (cons-pos-alistp (nthcdr n x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-butlast

    (defthm cons-pos-alistp-of-butlast
            (implies (cons-pos-alistp (double-rewrite x))
                     (cons-pos-alistp (butlast x n)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-update-nth

    (defthm cons-pos-alistp-of-update-nth
            (implies (cons-pos-alistp (double-rewrite x))
                     (iff (cons-pos-alistp (update-nth n y x))
                          (and (and (consp y)
                                    (consp (car y))
                                    (posp (cdr y)))
                               (or (<= (nfix n) (len x))
                                   (and (consp nil)
                                        (consp (car nil))
                                        (posp (cdr nil)))))))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-repeat

    (defthm cons-pos-alistp-of-repeat
            (iff (cons-pos-alistp (repeat n x))
                 (or (and (consp x)
                          (consp (car x))
                          (posp (cdr x)))
                     (zp n)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-take

    (defthm cons-pos-alistp-of-take
            (implies (cons-pos-alistp (double-rewrite x))
                     (iff (cons-pos-alistp (take n x))
                          (or (and (consp nil)
                                   (consp (car nil))
                                   (posp (cdr nil)))
                              (<= (nfix n) (len x)))))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-union-equal

    (defthm cons-pos-alistp-of-union-equal
            (equal (cons-pos-alistp (union-equal x y))
                   (and (cons-pos-alistp (list-fix x))
                        (cons-pos-alistp (double-rewrite y))))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-intersection-equal-2

    (defthm cons-pos-alistp-of-intersection-equal-2
            (implies (cons-pos-alistp (double-rewrite y))
                     (cons-pos-alistp (intersection-equal x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-intersection-equal-1

    (defthm cons-pos-alistp-of-intersection-equal-1
            (implies (cons-pos-alistp (double-rewrite x))
                     (cons-pos-alistp (intersection-equal x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-set-difference-equal

    (defthm cons-pos-alistp-of-set-difference-equal
            (implies (cons-pos-alistp x)
                     (cons-pos-alistp (set-difference-equal x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-when-subsetp-equal

    (defthm cons-pos-alistp-when-subsetp-equal
            (and (implies (and (subsetp-equal x y)
                               (cons-pos-alistp y))
                          (equal (cons-pos-alistp x)
                                 (true-listp x)))
                 (implies (and (cons-pos-alistp y)
                               (subsetp-equal x y))
                          (equal (cons-pos-alistp x)
                                 (true-listp x))))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-rcons

    (defthm cons-pos-alistp-of-rcons
            (iff (cons-pos-alistp (rcons a x))
                 (and (and (consp a)
                           (consp (car a))
                           (posp (cdr a)))
                      (cons-pos-alistp (list-fix x))))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-append

    (defthm cons-pos-alistp-of-append
            (equal (cons-pos-alistp (append a b))
                   (and (cons-pos-alistp (list-fix a))
                        (cons-pos-alistp b)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-rev

    (defthm cons-pos-alistp-of-rev
            (equal (cons-pos-alistp (rev x))
                   (cons-pos-alistp (list-fix x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-duplicated-members

    (defthm cons-pos-alistp-of-duplicated-members
            (implies (cons-pos-alistp x)
                     (cons-pos-alistp (duplicated-members x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-difference

    (defthm cons-pos-alistp-of-difference
            (implies (cons-pos-alistp x)
                     (cons-pos-alistp (set::difference x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-intersect-2

    (defthm cons-pos-alistp-of-intersect-2
            (implies (cons-pos-alistp y)
                     (cons-pos-alistp (set::intersect x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-intersect-1

    (defthm cons-pos-alistp-of-intersect-1
            (implies (cons-pos-alistp x)
                     (cons-pos-alistp (set::intersect x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-union

    (defthm cons-pos-alistp-of-union
            (iff (cons-pos-alistp (set::union x y))
                 (and (cons-pos-alistp (set::sfix x))
                      (cons-pos-alistp (set::sfix y))))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-mergesort

    (defthm cons-pos-alistp-of-mergesort
            (iff (cons-pos-alistp (set::mergesort x))
                 (cons-pos-alistp (list-fix x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-delete

    (defthm cons-pos-alistp-of-delete
            (implies (cons-pos-alistp x)
                     (cons-pos-alistp (set::delete k x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-insert

    (defthm cons-pos-alistp-of-insert
            (iff (cons-pos-alistp (set::insert a x))
                 (and (cons-pos-alistp (set::sfix x))
                      (and (consp a)
                           (consp (car a))
                           (posp (cdr a)))))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-sfix

    (defthm cons-pos-alistp-of-sfix
            (iff (cons-pos-alistp (set::sfix x))
                 (or (cons-pos-alistp x)
                     (not (set::setp x))))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-list-fix

    (defthm cons-pos-alistp-of-list-fix
            (implies (cons-pos-alistp x)
                     (cons-pos-alistp (list-fix x)))
            :rule-classes ((:rewrite)))

    Theorem: true-listp-when-cons-pos-alistp-compound-recognizer

    (defthm true-listp-when-cons-pos-alistp-compound-recognizer
            (implies (cons-pos-alistp x)
                     (true-listp x))
            :rule-classes :compound-recognizer)

    Theorem: cons-pos-alistp-when-not-consp

    (defthm cons-pos-alistp-when-not-consp
            (implies (not (consp x))
                     (equal (cons-pos-alistp x) (not x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-cdr-when-cons-pos-alistp

    (defthm cons-pos-alistp-of-cdr-when-cons-pos-alistp
            (implies (cons-pos-alistp (double-rewrite x))
                     (cons-pos-alistp (cdr x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-cons

    (defthm cons-pos-alistp-of-cons
            (equal (cons-pos-alistp (cons a x))
                   (and (and (consp a)
                             (consp (car a))
                             (posp (cdr a)))
                        (cons-pos-alistp x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-make-fal

    (defthm cons-pos-alistp-of-make-fal
            (implies (and (cons-pos-alistp x)
                          (cons-pos-alistp y))
                     (cons-pos-alistp (make-fal x y)))
            :rule-classes ((:rewrite)))

    Theorem: posp-of-cdr-when-member-equal-of-cons-pos-alistp

    (defthm posp-of-cdr-when-member-equal-of-cons-pos-alistp
            (and (implies (and (cons-pos-alistp x)
                               (member-equal a x))
                          (posp (cdr a)))
                 (implies (and (member-equal a x)
                               (cons-pos-alistp x))
                          (posp (cdr a))))
            :rule-classes ((:rewrite)))

    Theorem: consp-of-car-when-member-equal-of-cons-pos-alistp

    (defthm consp-of-car-when-member-equal-of-cons-pos-alistp
            (and (implies (and (cons-pos-alistp x)
                               (member-equal a x))
                          (consp (car a)))
                 (implies (and (member-equal a x)
                               (cons-pos-alistp x))
                          (consp (car a))))
            :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-cons-pos-alistp

    (defthm consp-when-member-equal-of-cons-pos-alistp
            (implies (and (cons-pos-alistp x)
                          (member-equal a x))
                     (consp a))
            :rule-classes
            ((:rewrite :backchain-limit-lst (0 0))
             (:rewrite :backchain-limit-lst (0 0)
                       :corollary (implies (if (member-equal a x)
                                               (cons-pos-alistp x)
                                               'nil)
                                           (consp a)))))

    Theorem: cons-pos-alistp-of-remove-assoc

    (defthm cons-pos-alistp-of-remove-assoc
            (implies (cons-pos-alistp x)
                     (cons-pos-alistp (remove-assoc-equal name x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-put-assoc

    (defthm cons-pos-alistp-of-put-assoc
            (implies (and (cons-pos-alistp x))
                     (iff (cons-pos-alistp (put-assoc-equal name val x))
                          (and (consp name) (posp val))))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-fast-alist-clean

    (defthm cons-pos-alistp-of-fast-alist-clean
            (implies (cons-pos-alistp x)
                     (cons-pos-alistp (fast-alist-clean x)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-hons-shrink-alist

    (defthm cons-pos-alistp-of-hons-shrink-alist
            (implies (and (cons-pos-alistp x)
                          (cons-pos-alistp y))
                     (cons-pos-alistp (hons-shrink-alist x y)))
            :rule-classes ((:rewrite)))

    Theorem: cons-pos-alistp-of-hons-acons

    (defthm cons-pos-alistp-of-hons-acons
            (equal (cons-pos-alistp (hons-acons a n x))
                   (and (consp a)
                        (posp n)
                        (cons-pos-alistp x)))
            :rule-classes ((:rewrite)))

    Theorem: posp-of-cdr-of-hons-assoc-equal-when-cons-pos-alistp

    (defthm posp-of-cdr-of-hons-assoc-equal-when-cons-pos-alistp
            (implies (cons-pos-alistp x)
                     (iff (posp (cdr (hons-assoc-equal k x)))
                          (hons-assoc-equal k x)))
            :rule-classes ((:rewrite)))

    Theorem: alistp-when-cons-pos-alistp-rewrite

    (defthm alistp-when-cons-pos-alistp-rewrite
            (implies (cons-pos-alistp x) (alistp x))
            :rule-classes ((:rewrite)))

    Theorem: alistp-when-cons-pos-alistp

    (defthm alistp-when-cons-pos-alistp
            (implies (cons-pos-alistp x) (alistp x))
            :rule-classes :tau-system)

    Theorem: posp-of-cdar-when-cons-pos-alistp

    (defthm posp-of-cdar-when-cons-pos-alistp
            (implies (cons-pos-alistp x)
                     (iff (posp (cdar x)) (consp x)))
            :rule-classes ((:rewrite)))

    Theorem: consp-of-caar-when-cons-pos-alistp

    (defthm consp-of-caar-when-cons-pos-alistp
            (implies (cons-pos-alistp x)
                     (iff (consp (caar x)) (consp x)))
            :rule-classes ((:rewrite)))

    Theorem: posp-of-cdr-of-assoc-equal-when-cons-pos-alistp

    (defthm posp-of-cdr-of-assoc-equal-when-cons-pos-alistp
            (implies (cons-pos-alistp alist)
                     (iff (posp (cdr (assoc-equal key alist)))
                          (assoc-equal key alist))))