• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
        • Std/lists/abstract
          • Element-list-p
          • Element-list-equiv
            • Element-list-nonempty-p
            • Elementlist-projection
            • Element-equiv
            • Generic-eval-requirement
            • Element-list-fix
            • Elementlist-mapappend
            • Element-fix
            • Outelement-list-p
            • Outelement-p
            • Element-xformer
            • Element-listxformer
            • Element-p
            • Def-listp-rule
            • Def-projection-rule
            • Def-nonempty-listp-rule
            • Def-mapappend-rule
            • Def-listfix-rule
          • Rev
          • Defsort
          • List-fix
          • Std/lists/nth
          • Hons-remove-duplicates
          • Std/lists/update-nth
          • Set-equiv
          • Duplicity
          • Prefixp
          • Std/lists/take
          • Std/lists/intersection$
          • Nats-equiv
          • Repeat
          • Index-of
          • All-equalp
          • Sublistp
          • Std/lists/nthcdr
          • Std/lists/append
          • Listpos
          • List-equiv
          • Final-cdr
          • Std/lists/remove
          • Subseq-list
          • Rcons
          • Std/lists/revappend
          • Std/lists/remove-duplicates-equal
          • Std/lists/last
          • Std/lists/reverse
          • Std/lists/resize-list
          • Flatten
          • Suffixp
          • Std/lists/set-difference
          • Std/lists/butlast
          • Std/lists/len
          • Std/lists/intersectp
          • Std/lists/true-listp
          • Intersectp-witness
          • Subsetp-witness
          • Std/lists/remove1-equal
          • Rest-n
          • First-n
          • Std/lists/union
          • Append-without-guard
          • Std/lists/subsetp
          • Std/lists/member
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/lists/abstract

    Element-list-equiv

    Generic typed list equivalence relation

    Definitions and Theorems

    Function: element-list-equiv

    (defun element-list-equiv (x y)
           (equal (element-list-fix x)
                  (element-list-fix y)))

    Theorem: element-list-equiv-is-an-equivalence

    (defthm element-list-equiv-is-an-equivalence
            (and (booleanp (element-list-equiv x y))
                 (element-list-equiv x x)
                 (implies (element-list-equiv x y)
                          (element-list-equiv y x))
                 (implies (and (element-list-equiv x y)
                               (element-list-equiv y z))
                          (element-list-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: element-list-equiv-implies-equal-element-list-fix-1

    (defthm element-list-equiv-implies-equal-element-list-fix-1
            (implies (element-list-equiv x x-equiv)
                     (equal (element-list-fix x)
                            (element-list-fix x-equiv)))
            :rule-classes (:congruence))

    Theorem: element-list-fix-under-element-list-equiv

    (defthm element-list-fix-under-element-list-equiv
            (element-list-equiv (element-list-fix x)
                                x)
            :rule-classes :rewrite)

    Theorem: equal-of-element-list-fix-1-forward-to-element-list-equiv

    (defthm equal-of-element-list-fix-1-forward-to-element-list-equiv
            (implies (equal (element-list-fix x) y)
                     (element-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-element-list-fix-2-forward-to-element-list-equiv

    (defthm equal-of-element-list-fix-2-forward-to-element-list-equiv
            (implies (equal x (element-list-fix y))
                     (element-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: element-list-equiv-of-element-list-fix-1-forward

    (defthm element-list-equiv-of-element-list-fix-1-forward
            (implies (element-list-equiv (element-list-fix x)
                                         y)
                     (element-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: element-list-equiv-of-element-list-fix-2-forward

    (defthm element-list-equiv-of-element-list-fix-2-forward
            (implies (element-list-equiv x (element-list-fix y))
                     (element-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: element-list-equiv-implies-element-equiv-car-1

    (defthm element-list-equiv-implies-element-equiv-car-1
            (implies (element-list-equiv x x-equiv)
                     (element-equiv (car x) (car x-equiv)))
            :rule-classes (:congruence))

    Theorem: element-list-equiv-implies-element-list-equiv-cdr-1

    (defthm element-list-equiv-implies-element-list-equiv-cdr-1
            (implies (element-list-equiv x x-equiv)
                     (element-list-equiv (cdr x)
                                         (cdr x-equiv)))
            :rule-classes (:congruence))

    Theorem: element-equiv-implies-element-list-equiv-cons-1

    (defthm element-equiv-implies-element-list-equiv-cons-1
            (implies (element-equiv x x-equiv)
                     (element-list-equiv (cons x y)
                                         (cons x-equiv y)))
            :rule-classes (:congruence))

    Theorem: element-list-equiv-implies-element-list-equiv-cons-2

    (defthm element-list-equiv-implies-element-list-equiv-cons-2
            (implies (element-list-equiv y y-equiv)
                     (element-list-equiv (cons x y)
                                         (cons x y-equiv)))
            :rule-classes (:congruence))