• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
        • Faig-constructors
        • Faig-onoff-equiv
        • Faig-purebool-p
        • Faig-alist-equiv
        • Faig-equiv
        • Faig-eval
        • Faig-restrict
        • Faig-fix
        • Faig-partial-eval
        • Faig-compose
        • Faig-compose-alist
          • Faig-compose-alist-thms
        • Patbind-faig
        • Faig-constants
      • Bed
      • 4v
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
  • Faig

Faig-compose-alist

(faig-compose-alist x sigma) composes into an FAIG Alist (an alist binding keys to FAIGs).

Signature
(faig-compose-alist x sigma) → *

The alist x does not need to be fast, and we produce an ordinary (slow) alist as a result.

Definitions and Theorems

Function: faig-compose-alist

(defun faig-compose-alist (x sigma)
       (declare (xargs :guard t))
       (let ((__function__ 'faig-compose-alist))
            (declare (ignorable __function__))
            (b* (((when (atom x)) nil)
                 (rest (faig-compose-alist (cdr x) sigma))
                 ((when (atom (car x))) rest))
                (cons (cons (caar x)
                            (faig-compose (cdar x) sigma))
                      rest))))

Subtopics

Faig-compose-alist-thms
Basic theorems about faig-compose-alist.