• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
        • Faig-constructors
        • Faig-onoff-equiv
        • Faig-purebool-p
        • Faig-alist-equiv
        • Faig-equiv
        • Faig-eval
          • Faig-eval-alist
          • Faig-eval-list
          • Faig-eval-thms
        • Faig-restrict
        • Faig-fix
        • Faig-partial-eval
        • Faig-compose
        • Faig-compose-alist
        • Patbind-faig
        • Faig-constants
      • Bed
      • 4v
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
  • Faig

Faig-eval

(faig-eval x env) evaluates x, a faig, under the environment env, producing a pair of Boolean values.

Signature
(faig-eval x env) → *

See aig-eval; the env should be a fast alist and you will want to clear the memoize table for aig-eval when you are done using the env.

Definitions and Theorems

Function: faig-eval

(defun faig-eval (x env)
       (declare (xargs :guard t))
       (let ((__function__ 'faig-eval))
            (declare (ignorable __function__))
            (if (atom x)
                '(t . t)
                (cons (aig-eval (car x) env)
                      (aig-eval (cdr x) env)))))

Theorem: faig-eval-of-constants

(defthm faig-eval-of-constants
        (and (equal (faig-eval (faig-t) env)
                    (faig-t))
             (equal (faig-eval (faig-f) env)
                    (faig-f))
             (equal (faig-eval (faig-z) env)
                    (faig-z))
             (equal (faig-eval (faig-x) env)
                    (faig-x))
             (equal (faig-eval nil env) (faig-x))))

Subtopics

Faig-eval-alist
(faig-eval-list x env) evaluates an FAIG alist (an alist binding keys to FAIGs).
Faig-eval-list
(faig-eval-list x env) evaluates a list of FAIGs.
Faig-eval-thms
Basic theorems about faig-eval.