• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
        • Faig-constructors
        • Faig-onoff-equiv
        • Faig-purebool-p
          • Faig-purebool-check
          • Faig-purebool-list-p
            • Faig-purebool-list-p-basics
              • Faig-purebool-list-check
              • Faig-purebool-list-aig
            • Faig-purebool-aig
          • Faig-alist-equiv
          • Faig-equiv
          • Faig-eval
          • Faig-restrict
          • Faig-fix
          • Faig-partial-eval
          • Faig-compose
          • Faig-compose-alist
          • Patbind-faig
          • Faig-constants
        • Bed
        • 4v
      • Debugging
      • Projects
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Faig-purebool-list-p

    Faig-purebool-list-p-basics

    Basic theorems about faig-purebool-list-p, generated by std::deflist.

    Definitions and Theorems

    Theorem: faig-purebool-list-p-of-cons

    (defthm faig-purebool-list-p-of-cons
      (equal (faig-purebool-list-p (cons a x))
             (and (faig-purebool-p a)
                  (faig-purebool-list-p x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-cdr-when-faig-purebool-list-p

    (defthm faig-purebool-list-p-of-cdr-when-faig-purebool-list-p
      (implies (faig-purebool-list-p (double-rewrite x))
               (faig-purebool-list-p (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-when-not-consp

    (defthm faig-purebool-list-p-when-not-consp
      (implies (not (consp x))
               (faig-purebool-list-p x))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-p-of-car-when-faig-purebool-list-p

    (defthm faig-purebool-p-of-car-when-faig-purebool-list-p
      (implies (faig-purebool-list-p x)
               (iff (faig-purebool-p (car x))
                    (or (consp x) (faig-purebool-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-append

    (defthm faig-purebool-list-p-of-append
      (equal (faig-purebool-list-p (append a b))
             (and (faig-purebool-list-p a)
                  (faig-purebool-list-p b)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-list-fix

    (defthm faig-purebool-list-p-of-list-fix
      (equal (faig-purebool-list-p (list-fix x))
             (faig-purebool-list-p x))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-sfix

    (defthm faig-purebool-list-p-of-sfix
      (iff (faig-purebool-list-p (set::sfix x))
           (or (faig-purebool-list-p x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-insert

    (defthm faig-purebool-list-p-of-insert
      (iff (faig-purebool-list-p (set::insert a x))
           (and (faig-purebool-list-p (set::sfix x))
                (faig-purebool-p a)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-delete

    (defthm faig-purebool-list-p-of-delete
      (implies (faig-purebool-list-p x)
               (faig-purebool-list-p (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-mergesort

    (defthm faig-purebool-list-p-of-mergesort
      (iff (faig-purebool-list-p (set::mergesort x))
           (faig-purebool-list-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-union

    (defthm faig-purebool-list-p-of-union
      (iff (faig-purebool-list-p (set::union x y))
           (and (faig-purebool-list-p (set::sfix x))
                (faig-purebool-list-p (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-intersect-1

    (defthm faig-purebool-list-p-of-intersect-1
      (implies (faig-purebool-list-p x)
               (faig-purebool-list-p (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-intersect-2

    (defthm faig-purebool-list-p-of-intersect-2
      (implies (faig-purebool-list-p y)
               (faig-purebool-list-p (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-difference

    (defthm faig-purebool-list-p-of-difference
      (implies (faig-purebool-list-p x)
               (faig-purebool-list-p (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-duplicated-members

    (defthm faig-purebool-list-p-of-duplicated-members
      (implies (faig-purebool-list-p x)
               (faig-purebool-list-p (duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-rev

    (defthm faig-purebool-list-p-of-rev
      (equal (faig-purebool-list-p (rev x))
             (faig-purebool-list-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-rcons

    (defthm faig-purebool-list-p-of-rcons
      (iff (faig-purebool-list-p (rcons a x))
           (and (faig-purebool-p a)
                (faig-purebool-list-p (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-p-when-member-equal-of-faig-purebool-list-p

    (defthm faig-purebool-p-when-member-equal-of-faig-purebool-list-p
      (and (implies (and (member-equal a x)
                         (faig-purebool-list-p x))
                    (faig-purebool-p a))
           (implies (and (faig-purebool-list-p x)
                         (member-equal a x))
                    (faig-purebool-p a)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-when-subsetp-equal

    (defthm faig-purebool-list-p-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (faig-purebool-list-p y))
                    (faig-purebool-list-p x))
           (implies (and (faig-purebool-list-p y)
                         (subsetp-equal x y))
                    (faig-purebool-list-p x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-set-equiv-congruence

    (defthm faig-purebool-list-p-set-equiv-congruence
      (implies (set-equiv x y)
               (equal (faig-purebool-list-p x)
                      (faig-purebool-list-p y)))
      :rule-classes :congruence)

    Theorem: faig-purebool-list-p-of-set-difference-equal

    (defthm faig-purebool-list-p-of-set-difference-equal
      (implies (faig-purebool-list-p x)
               (faig-purebool-list-p (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-intersection-equal-1

    (defthm faig-purebool-list-p-of-intersection-equal-1
      (implies (faig-purebool-list-p (double-rewrite x))
               (faig-purebool-list-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-intersection-equal-2

    (defthm faig-purebool-list-p-of-intersection-equal-2
      (implies (faig-purebool-list-p (double-rewrite y))
               (faig-purebool-list-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-union-equal

    (defthm faig-purebool-list-p-of-union-equal
      (equal (faig-purebool-list-p (union-equal x y))
             (and (faig-purebool-list-p (list-fix x))
                  (faig-purebool-list-p (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-take

    (defthm faig-purebool-list-p-of-take
      (implies (faig-purebool-list-p (double-rewrite x))
               (iff (faig-purebool-list-p (take n x))
                    (or (faig-purebool-p nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-repeat

    (defthm faig-purebool-list-p-of-repeat
      (iff (faig-purebool-list-p (repeat n x))
           (or (faig-purebool-p x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-p-of-nth-when-faig-purebool-list-p

    (defthm faig-purebool-p-of-nth-when-faig-purebool-list-p
      (implies (and (faig-purebool-list-p x)
                    (< (nfix n) (len x)))
               (faig-purebool-p (nth n x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-update-nth

    (defthm faig-purebool-list-p-of-update-nth
      (implies (faig-purebool-list-p (double-rewrite x))
               (iff (faig-purebool-list-p (update-nth n y x))
                    (and (faig-purebool-p y)
                         (or (<= (nfix n) (len x))
                             (faig-purebool-p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-butlast

    (defthm faig-purebool-list-p-of-butlast
      (implies (faig-purebool-list-p (double-rewrite x))
               (faig-purebool-list-p (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-nthcdr

    (defthm faig-purebool-list-p-of-nthcdr
      (implies (faig-purebool-list-p (double-rewrite x))
               (faig-purebool-list-p (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-last

    (defthm faig-purebool-list-p-of-last
      (implies (faig-purebool-list-p (double-rewrite x))
               (faig-purebool-list-p (last x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-remove

    (defthm faig-purebool-list-p-of-remove
      (implies (faig-purebool-list-p x)
               (faig-purebool-list-p (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: faig-purebool-list-p-of-revappend

    (defthm faig-purebool-list-p-of-revappend
      (equal (faig-purebool-list-p (revappend x y))
             (and (faig-purebool-list-p (list-fix x))
                  (faig-purebool-list-p y)))
      :rule-classes ((:rewrite)))