• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
        • Alist-keys
        • Remove-assocs
        • Alist-vals
        • Alist-map-vals
        • Std/alists/strip-cdrs
        • Hons-rassoc-equal
        • Alist-map-keys
        • Std/alists/hons-assoc-equal
        • Fal-extract
          • Std/alists/strip-cars
          • Fal-find-any
          • Fal-extract-vals
          • Std/alists/abstract
          • Fal-all-boundp
          • Std/alists/alistp
          • Append-alist-vals
          • Append-alist-keys
          • Alist-equiv
          • Hons-remove-assoc
          • Std/alists/pairlis$
          • Alists-agree
          • Worth-hashing
          • Sub-alistp
          • Alist-fix
          • Std/alists/remove-assoc-equal
          • Std/alists/assoc-equal
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/alists

    Fal-extract

    (fal-extract keys al) extracts a "subset" of the alist al by binding every key in keys to its value in al, skipping any unbound keys.

    This is a "modern" alist function that respects the non-alist convention; see std/alists for discussion of this convention.

    This function is optimized for fast-alists. Ordinary alists will be temporarily made fast.

    Definitions and Theorems

    Function: fal-extract1

    (defun fal-extract1 (keys al)
           "Assumes AL is fast"
           (declare (xargs :guard t))
           (b* (((when (atom keys)) nil)
                (look (hons-get (car keys) al))
                ((when look)
                 (cons look (fal-extract1 (cdr keys) al))))
               (fal-extract1 (cdr keys) al)))

    Function: fal-extract

    (defun fal-extract (keys al)
           "Makes AL fast if necessary"
           (declare (xargs :guard t))
           (mbe :logic (b* (((when (atom keys)) nil)
                            (look (hons-get (car keys) al))
                            ((when look)
                             (cons look (fal-extract (cdr keys) al))))
                           (fal-extract (cdr keys) al))
                :exec (with-fast-alist al (fal-extract1 keys al))))

    Theorem: fal-extract1-removal

    (defthm fal-extract1-removal
            (equal (fal-extract1 keys al)
                   (fal-extract keys al)))

    Theorem: fal-extract-when-atom

    (defthm fal-extract-when-atom
            (implies (atom keys)
                     (equal (fal-extract keys al) nil)))

    Theorem: fal-extract-of-cons

    (defthm fal-extract-of-cons
            (equal (fal-extract (cons a keys) al)
                   (if (hons-get a al)
                       (cons (hons-get a al)
                             (fal-extract keys al))
                       (fal-extract keys al))))

    Theorem: alistp-of-fal-extract

    (defthm alistp-of-fal-extract
            (alistp (fal-extract keys al)))

    Theorem: fal-extract-of-list-fix-keys

    (defthm fal-extract-of-list-fix-keys
            (equal (fal-extract (list-fix keys) al)
                   (fal-extract keys al)))

    Theorem: list-equiv-implies-equal-fal-extract-1

    (defthm list-equiv-implies-equal-fal-extract-1
            (implies (list-equiv keys keys-equiv)
                     (equal (fal-extract keys al)
                            (fal-extract keys-equiv al)))
            :rule-classes (:congruence))

    Theorem: alist-equiv-implies-equal-fal-extract-2

    (defthm alist-equiv-implies-equal-fal-extract-2
            (implies (alist-equiv al al-equiv)
                     (equal (fal-extract keys al)
                            (fal-extract keys al-equiv)))
            :rule-classes (:congruence))

    Theorem: fal-extract-of-append

    (defthm fal-extract-of-append
            (equal (fal-extract (append x y) al)
                   (append (fal-extract x al)
                           (fal-extract y al))))

    Theorem: fal-extract-of-rev

    (defthm fal-extract-of-rev
            (equal (fal-extract (rev x) al)
                   (rev (fal-extract x al))))

    Theorem: fal-extract-of-revappend

    (defthm fal-extract-of-revappend
            (equal (fal-extract (revappend x y) al)
                   (revappend (fal-extract x al)
                              (fal-extract y al))))

    Theorem: len-of-fal-extract

    (defthm len-of-fal-extract
            (<= (len (fal-extract x al)) (len x))
            :rule-classes ((:rewrite) (:linear)))

    Theorem: hons-assoc-equal-fal-extract

    (defthm hons-assoc-equal-fal-extract
            (equal (hons-assoc-equal x (fal-extract keys al))
                   (and (member-equal x keys)
                        (hons-assoc-equal x al))))