• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
      • Arithmetic
        • Lispfloat
        • Arithmetic-1
          • Inequalities-of-products
          • Basic-product-normalization
          • Inequalities-of-reciprocals
          • Arithmetic/natp-posp
          • Basic-expt-normalization
          • More-rational-identities
          • Inequalities-of-exponents
          • Basic-sum-normalization
          • Basic-rational-identities
          • Basic-expt-type-rules
          • Inequalities-of-sums
            • Basic-products-with-negations
            • Fc
          • Number-theory
          • Proof-by-arith
          • Arith-equivs
          • Number-theory
          • Arithmetic-3
          • Arithmetic-2
          • Arithmetic-light
          • Arithmetic-5
        • Bit-vectors
        • Algebra
    • Arithmetic-1

    Inequalities-of-sums

    Basic normalization to move negative terms to the other side of an inequality.

    Definitions and Theorems

    Theorem: <-0-minus

    (defthm <-0-minus (equal (< 0 (- x)) (< x 0)))

    Theorem: <-minus-zero

    (defthm <-minus-zero
            (equal (< (- x) 0) (< 0 x)))

    Theorem: <-0-+-negative-1

    (defthm <-0-+-negative-1
            (equal (< 0 (+ (- y) x)) (< y x)))

    Theorem: <-0-+-negative-2

    (defthm <-0-+-negative-2
            (equal (< 0 (+ x (- y))) (< y x)))

    Theorem: <-+-negative-0-1

    (defthm <-+-negative-0-1
            (equal (< (+ (- y) x) 0) (< x y)))

    Theorem: <-+-negative-0-2

    (defthm <-+-negative-0-2
            (equal (< (+ x (- y)) 0) (< x y)))