• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Mutual-recursion
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Loop$-primer
        • Fast-alists
        • Defmacro
        • Defconst
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Irrelevant-formals
        • Efficiency
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
          • Member
          • Append
          • Nth
          • Len
          • List
          • True-listp
          • String-listp
          • Nat-listp
          • Character-listp
          • Symbol-listp
          • True-list-listp
          • Length
          • Search
          • Intersection$
          • Union$
          • Remove-duplicates
          • Position
          • Take
          • Update-nth
          • Set-difference$
          • Subsetp
          • No-duplicatesp
          • Nthcdr
          • Concatenate
          • Remove
          • Remove1
          • Intersectp
          • Endp
          • Keyword-value-listp
          • Reverse
          • List-utilities
          • Add-to-set
          • Set-size
          • Integer-listp
          • Revappend
          • Subseq
          • Make-list
          • Lists-light
          • Butlast
          • Pairlis$
          • Boolean-listp
          • Substitute
          • Count
          • Keyword-listp
          • List*
          • Eqlable-listp
          • Last
          • Pos-listp
          • Integer-range-listp
            • Integer-range-listp-basics
            • Integer-range-list-fix
            • Rational-listp
            • Evens
            • Atom-listp
            • ACL2-number-listp
            • Typed-list-utilities
            • Listp
            • Odds
            • Standard-char-listp
            • Last-cdr
            • Pairlis
            • Proper-consp
            • Improper-consp
            • Pairlis-x2
            • Pairlis-x1
            • Merge-sort-lexorder
            • Fix-true-list
            • Real-listp
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • Primitive
          • <<
          • Revert-world
          • Set-duplicate-keys-action
          • Unmemoize
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Real
        • Start-here
        • Debugging
        • Miscellaneous
        • Output-controls
        • Macros
        • Interfacing-tools
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Integer-range-listp

    Integer-range-list-fix

    Fixing function for integer-range-listp.

    Signature
    (integer-range-list-fix lower upper x) → fixed-x
    Arguments
    lower — Guard (integerp lower).
    upper — Guard (integerp upper).
    x — Guard (integer-range-listp (ifix lower) (ifix upper) x).
    Returns
    fixed-x — Type (integer-range-listp lower upper fixed-x), given (and (integerp lower) (integerp upper) (< lower upper)).

    This lifts integer-range-fix to lists. See that function for more information, in particular about the fixing of lower and upper to integers and the treatment of empty ranges.

    Definitions and Theorems

    Function: integer-range-list-fix

    (defun integer-range-list-fix (lower upper x)
     (declare (xargs :guard (and (integerp lower)
                                 (integerp upper)
                                 (integer-range-listp (ifix lower)
                                                      (ifix upper)
                                                      x))))
     (let ((__function__ 'integer-range-list-fix))
      (declare (ignorable __function__))
      (mbe
          :logic
          (cond ((atom x) nil)
                (t (cons (integer-range-fix lower upper (car x))
                         (integer-range-list-fix lower upper (cdr x)))))
          :exec x)))

    Theorem: return-type-of-integer-range-list-fix

    (defthm return-type-of-integer-range-list-fix
      (implies (and (integerp lower)
                    (integerp upper)
                    (< lower upper))
               (b* ((fixed-x (integer-range-list-fix lower upper x)))
                 (integer-range-listp lower upper fixed-x)))
      :rule-classes :rewrite)

    Theorem: integer-listp-of-integer-range-list-fix

    (defthm integer-listp-of-integer-range-list-fix
      (b* ((fixed-x (integer-range-list-fix lower upper x)))
        (integer-listp fixed-x))
      :rule-classes :rewrite)

    Theorem: integer-range-list-fix-when-integer-range-p

    (defthm integer-range-list-fix-when-integer-range-p
      (implies (and (integer-range-listp (ifix lower)
                                         (ifix upper)
                                         x)
                    (< (ifix lower) (ifix upper)))
               (equal (integer-range-list-fix lower upper x)
                      x)))

    Theorem: integer-range-list-fix-of-nil

    (defthm integer-range-list-fix-of-nil
      (equal (integer-range-list-fix lower upper nil)
             nil))

    Theorem: integer-range-list-fix-of-cons

    (defthm integer-range-list-fix-of-cons
      (equal (integer-range-list-fix lower upper (cons x y))
             (cons (integer-range-fix lower upper x)
                   (integer-range-list-fix lower upper y))))

    Theorem: integer-range-list-fix-of-append

    (defthm integer-range-list-fix-of-append
      (equal (integer-range-list-fix lower upper (append x y))
             (append (integer-range-list-fix lower upper x)
                     (integer-range-list-fix lower upper y))))

    Theorem: len-of-integer-range-list-fix

    (defthm len-of-integer-range-list-fix
      (equal (len (integer-range-list-fix lower upper x))
             (len x)))

    Theorem: consp-of-integer-range-list-fix

    (defthm consp-of-integer-range-list-fix
      (equal (consp (integer-range-list-fix lower upper x))
             (consp x)))

    Theorem: car-of-integer-range-list-fix

    (defthm car-of-integer-range-list-fix
      (implies (consp x)
               (equal (car (integer-range-list-fix lower upper x))
                      (integer-range-fix lower upper (car x)))))

    Theorem: cdr-of-integer-range-list-fix

    (defthm cdr-of-integer-range-list-fix
      (implies (consp x)
               (equal (cdr (integer-range-list-fix lower upper x))
                      (integer-range-list-fix lower upper (cdr x)))))

    Theorem: rev-of-integer-range-list-fix

    (defthm rev-of-integer-range-list-fix
      (equal (rev (integer-range-list-fix lower upper x))
             (integer-range-list-fix lower upper (rev x))))

    Theorem: integer-range-list-fix-of-ifix-lower

    (defthm integer-range-list-fix-of-ifix-lower
      (equal (integer-range-list-fix (ifix lower)
                                     upper x)
             (integer-range-list-fix lower upper x)))

    Theorem: integer-range-list-fix-int-equiv-congruence-on-lower

    (defthm integer-range-list-fix-int-equiv-congruence-on-lower
      (implies (int-equiv lower lower-equiv)
               (equal (integer-range-list-fix lower upper x)
                      (integer-range-list-fix lower-equiv upper x)))
      :rule-classes :congruence)

    Theorem: integer-range-list-fix-of-ifix-upper

    (defthm integer-range-list-fix-of-ifix-upper
      (equal (integer-range-list-fix lower (ifix upper)
                                     x)
             (integer-range-list-fix lower upper x)))

    Theorem: integer-range-list-fix-int-equiv-congruence-on-upper

    (defthm integer-range-list-fix-int-equiv-congruence-on-upper
      (implies (int-equiv upper upper-equiv)
               (equal (integer-range-list-fix lower upper x)
                      (integer-range-list-fix lower upper-equiv x)))
      :rule-classes :congruence)