• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Hons-and-memoization
      • Events
      • History
      • Parallelism
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Memoize
        • Mbe
        • Io
        • Apply$
        • Defpkg
        • Mutual-recursion
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Loop$-primer
        • Fast-alists
        • Defmacro
        • Defconst
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
          • Natp
            • Maybe-natp
              • Maybe-natp-fix
              • Maybe-nat-equiv
          • Unsigned-byte-p
          • Posp
          • +
          • Bitp
          • Zero-test-idioms
          • Nat-listp
          • Integerp
          • <
          • *
          • Zp
          • -
          • Signed-byte-p
          • Logbitp
          • Expt
          • Ash
          • Rationalp
          • Sharp-f-reader
          • Logand
          • =
          • <=
          • Floor
          • Random$
          • Nfix
          • Truncate
          • Complex
          • Numbers-introduction
          • Code-char
          • Integer-length
          • Zip
          • Logior
          • Sharp-u-reader
          • Char-code
          • Unary--
          • Integer-listp
          • Boole$
          • /
          • Mod
          • Logxor
          • Lognot
          • Integer-range-p
          • Ifix
          • ACL2-numberp
          • Ceiling
          • Mod-expt
          • Round
          • Logeqv
          • Explode-nonnegative-integer
          • Max
          • Evenp
          • Nonnegative-integer-quotient
          • Zerop
          • Abs
          • Fix
          • Allocate-fixnum-range
          • Rem
          • 1+
          • Pos-listp
          • Signum
          • Real/rationalp
          • Rational-listp
          • Rfix
          • >=
          • >
          • Logcount
          • ACL2-number-listp
          • /=
          • Unary-/
          • Complex/complex-rationalp
          • Logtest
          • Logandc1
          • Logorc1
          • Logandc2
          • 1-
          • Numerator
          • Logorc2
          • Denominator
          • The-number
          • Realfix
          • Complex-rationalp
          • Min
          • Lognor
          • Zpf
          • Oddp
          • Minusp
          • Lognand
          • Imagpart
          • Conjugate
          • Int=
          • Realpart
          • Plusp
        • Irrelevant-formals
        • Efficiency
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
        • Set-register-invariant-risk
        • Strings
        • Program-wrapper
        • Get-internal-time
        • Basics
        • Packages
        • Defmacro-untouchable
        • Primitive
        • <<
        • Revert-world
        • Set-duplicate-keys-action
        • Unmemoize
        • Symbols
        • Def-list-constructor
        • Easy-simplify-term
        • Defiteration
        • Defopen
        • Sleep
      • Start-here
      • Real
      • Debugging
      • Miscellaneous
      • Output-controls
      • Macros
      • Interfacing-tools
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
  • Natp
  • Std/basic

Maybe-natp

Recognizer for naturals and nil.

This is like an option type; when x satisfies maybe-natp, then either it is a natural number or nothing.

Definitions and Theorems

Function: maybe-natp$inline

(defun maybe-natp$inline (x)
       (declare (xargs :guard t))
       (or (not x) (natp x)))

Theorem: maybe-natp-compound-recognizer

(defthm maybe-natp-compound-recognizer
        (equal (maybe-natp x)
               (or (not x)
                   (and (integerp x) (<= 0 x))))
        :rule-classes :compound-recognizer)

Subtopics

Maybe-natp-fix
(maybe-natp-fix x) is the identity for maybe-natps, or coerces any invalid object to nil.
Maybe-nat-equiv
(maybe-natp-equiv x y) is an equivalence relation for maybe-natps, i.e., equality up to maybe-natp-fix.