• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Hons-and-memoization
      • Events
      • History
      • Parallelism
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Mutual-recursion
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Loop$-primer
        • Fast-alists
        • Defmacro
        • Defconst
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
          • Natp
          • Unsigned-byte-p
          • Posp
          • +
          • Bitp
          • Zero-test-idioms
          • Nat-listp
          • Integerp
          • <
          • *
          • Zp
          • -
          • Signed-byte-p
          • Logbitp
          • Expt
          • Ash
          • Rationalp
          • Sharp-f-reader
          • Logand
          • =
          • <=
          • Floor
          • Random$
          • Nfix
          • Truncate
          • Complex
          • Numbers-introduction
          • Code-char
          • Integer-length
          • Zip
          • Logior
          • Sharp-u-reader
          • Char-code
          • Unary--
          • Integer-listp
          • Boole$
          • /
          • Mod
          • Logxor
          • Lognot
          • Integer-range-p
          • Ifix
          • ACL2-numberp
          • Ceiling
          • Mod-expt
            • Round
            • Logeqv
            • Explode-nonnegative-integer
            • Max
            • Evenp
            • Nonnegative-integer-quotient
            • Zerop
            • Abs
            • Fix
            • Allocate-fixnum-range
            • Rem
            • 1+
            • Pos-listp
            • Signum
            • Real/rationalp
            • Rational-listp
            • Rfix
            • >=
            • >
            • Logcount
            • ACL2-number-listp
            • /=
            • Unary-/
            • Complex/complex-rationalp
            • Logtest
            • Logandc1
            • Logorc1
            • Logandc2
            • 1-
            • Numerator
            • Logorc2
            • Denominator
            • The-number
            • Realfix
            • Complex-rationalp
            • Min
            • Lognor
            • Zpf
            • Oddp
            • Minusp
            • Lognand
            • Imagpart
            • Conjugate
            • Int=
            • Realpart
            • Plusp
          • Irrelevant-formals
          • Efficiency
          • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
          • Redefining-programs
          • Lists
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Defmacro-untouchable
          • Primitive
          • <<
          • Revert-world
          • Set-duplicate-keys-action
          • Unmemoize
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Defopen
          • Sleep
        • Start-here
        • Real
        • Debugging
        • Miscellaneous
        • Output-controls
        • Macros
        • Interfacing-tools
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Numbers
    • ACL2-built-ins

    Mod-expt

    Exponential function

    (mod-expt r i m) is the result of raising the number r to the integer power i and then taking the residue mod m. That is, (mod-expt r i m) is equal to (mod (expt r i) m).

    The guard for (mod-expt r i m) is that r is a rational number and i is an integer; if r is 0 then i is nonnegative; and m is a non-zero rational number.

    In some implementations (GCL Version 2.7.0 as of this writing), this function is highly optimized when r and i are natural numbers, not both zero, and m is a positive integer. For other Lisp implementations, consider using function mod-expt-fast, defined in the community book arithmetic-3/floor-mod/mod-expt-fast.lisp, which should still provide significantly improved performance over this function.

    Function: mod-expt

    (defun
         mod-expt (base exp mod)
         (declare (xargs :guard (and (real/rationalp base)
                                     (integerp exp)
                                     (not (and (eql base 0) (< exp 0)))
                                     (real/rationalp mod)
                                     (not (eql mod 0)))))
         (mod (expt base exp) mod))