• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
      • Arithmetic
        • Lispfloat
        • Arithmetic-1
        • Number-theory
        • Proof-by-arith
        • Arith-equivs
          • Nat-equiv
            • Nats-equiv
          • Bit->bool
          • Bit-equiv
          • Int-equiv
          • Negp
          • Bool->bit
        • Number-theory
        • Arithmetic-3
        • Arithmetic-2
        • Arithmetic-light
        • Arithmetic-5
      • Bit-vectors
      • Algebra
  • Arith-equivs

Nat-equiv

Equivalence under nfix, i.e., natural number equivalence.

Definitions and Theorems

Theorem: int-equiv-refines-nat-equiv

(defthm int-equiv-refines-nat-equiv
        (implies (int-equiv x y)
                 (nat-equiv x y))
        :rule-classes (:refinement))

Theorem: nat-equiv-implies-equal-zp-1

(defthm nat-equiv-implies-equal-zp-1
        (implies (nat-equiv a a-equiv)
                 (equal (zp a) (zp a-equiv)))
        :rule-classes (:congruence))

Subtopics

Nats-equiv
Recognizer for lists that are the same length and that are pairwise equivalent up to nfix.