• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
        • Std/lists/abstract
        • Rev
        • Defsort
        • List-fix
        • Std/lists/nth
        • Hons-remove-duplicates
        • Std/lists/update-nth
        • Set-equiv
        • Duplicity
        • Prefixp
        • Std/lists/take
        • Std/lists/intersection$
        • Nats-equiv
          • Repeat
          • Index-of
          • All-equalp
          • Sublistp
          • Std/lists/nthcdr
          • Std/lists/append
          • Listpos
          • List-equiv
          • Final-cdr
          • Std/lists/remove
          • Subseq-list
          • Rcons
          • Std/lists/revappend
          • Std/lists/remove-duplicates-equal
          • Std/lists/last
          • Std/lists/reverse
          • Std/lists/resize-list
          • Flatten
          • Suffixp
          • Std/lists/set-difference
          • Std/lists/butlast
          • Std/lists/len
          • Std/lists/intersectp
          • Std/lists/true-listp
          • Intersectp-witness
          • Subsetp-witness
          • Std/lists/remove1-equal
          • Rest-n
          • First-n
          • Std/lists/union
          • Append-without-guard
          • Std/lists/subsetp
          • Std/lists/member
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/lists
    • Nat-equiv

    Nats-equiv

    Recognizer for lists that are the same length and that are pairwise equivalent up to nfix.

    Definitions and Theorems

    Function: nats-equiv

    (defun nats-equiv (x y)
           (if (and (atom x) (atom y))
               t
               (and (nat-equiv (car x) (car y))
                    (nats-equiv (cdr x) (cdr y)))))

    This is an equivalence relation:

    Theorem: nats-equiv-is-an-equivalence

    (defthm nats-equiv-is-an-equivalence
            (and (booleanp (nats-equiv x y))
                 (nats-equiv x x)
                 (implies (nats-equiv x y)
                          (nats-equiv y x))
                 (implies (and (nats-equiv x y) (nats-equiv y z))
                          (nats-equiv x z)))
            :rule-classes (:equivalence))

    It is also a refinement of list-equiv:

    Theorem: list-equiv-refines-nats-equiv

    (defthm list-equiv-refines-nats-equiv
            (implies (list-equiv x y)
                     (nats-equiv x y))
            :rule-classes (:refinement))

    It also enjoys several basic congruences:

    Theorem: nats-equiv-implies-nat-equiv-car-1

    (defthm nats-equiv-implies-nat-equiv-car-1
            (implies (nats-equiv x x-equiv)
                     (nat-equiv (car x) (car x-equiv)))
            :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-cdr-1

    (defthm nats-equiv-implies-nats-equiv-cdr-1
            (implies (nats-equiv x x-equiv)
                     (nats-equiv (cdr x) (cdr x-equiv)))
            :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-cons-2

    (defthm nats-equiv-implies-nats-equiv-cons-2
            (implies (nats-equiv x x-equiv)
                     (nats-equiv (cons a x)
                                 (cons a x-equiv)))
            :rule-classes (:congruence))

    Theorem: nats-equiv-of-cons

    (defthm nats-equiv-of-cons
            (equal (nats-equiv (cons a x) z)
                   (and (nat-equiv a (car z))
                        (nats-equiv x (cdr z)))))

    Theorem: nats-equiv-implies-nat-equiv-nth-2

    (defthm nats-equiv-implies-nat-equiv-nth-2
            (implies (nats-equiv x x-equiv)
                     (nat-equiv (nth n x) (nth n x-equiv)))
            :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-update-nth-3

    (defthm nats-equiv-implies-nats-equiv-update-nth-3
            (implies (nats-equiv x x-equiv)
                     (nats-equiv (update-nth n v x)
                                 (update-nth n v x-equiv)))
            :rule-classes (:congruence))

    Theorem: nat-equiv-implies-nats-equiv-update-nth-2

    (defthm nat-equiv-implies-nats-equiv-update-nth-2
            (implies (nat-equiv v v-equiv)
                     (nats-equiv (update-nth n v x)
                                 (update-nth n v-equiv x)))
            :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-append-2

    (defthm nats-equiv-implies-nats-equiv-append-2
            (implies (nats-equiv y y-equiv)
                     (nats-equiv (append x y)
                                 (append x y-equiv)))
            :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-revappend-2

    (defthm nats-equiv-implies-nats-equiv-revappend-2
            (implies (nats-equiv y y-equiv)
                     (nats-equiv (revappend x y)
                                 (revappend x y-equiv)))
            :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-take-2

    (defthm nats-equiv-implies-nats-equiv-take-2
            (implies (nats-equiv x x-equiv)
                     (nats-equiv (take n x)
                                 (take n x-equiv)))
            :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-nthcdr-2

    (defthm nats-equiv-implies-nats-equiv-nthcdr-2
            (implies (nats-equiv x x-equiv)
                     (nats-equiv (nthcdr n x)
                                 (nthcdr n x-equiv)))
            :rule-classes (:congruence))

    Theorem: nats-equiv-implies-nats-equiv-make-list-ac-3

    (defthm nats-equiv-implies-nats-equiv-make-list-ac-3
            (implies (nats-equiv ac ac-equiv)
                     (nats-equiv (make-list-ac n val ac)
                                 (make-list-ac n val ac-equiv)))
            :rule-classes (:congruence))

    Theorem: nat-equiv-implies-nats-equiv-replicate-2

    (defthm nat-equiv-implies-nats-equiv-replicate-2
            (implies (nat-equiv x x-equiv)
                     (nats-equiv (replicate n x)
                                 (replicate n x-equiv)))
            :rule-classes (:congruence))