• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Hons-and-memoization
      • Events
      • History
      • Parallelism
      • Programming
      • Start-here
      • Real
      • Debugging
      • Miscellaneous
        • Term
        • Ld
        • Hints
        • Type-set
        • Ordinals
          • O-p
          • O<
          • Proof-of-well-foundedness
          • Two-nats-measure
          • Nat-list-measure
          • Make-ord
          • O-first-coeff
          • E0-ord-<
          • O-first-expt
          • E0-ordinalp
          • O-rst
          • O-finp
            • O>=
            • O<=
            • O-infp
            • O>
          • ACL2-customization
          • With-prover-step-limit
          • With-prover-time-limit
          • Set-prover-step-limit
          • Local-incompatibility
          • Set-case-split-limitations
          • Subversive-recursions
          • Specious-simplification
          • Defsum
          • Oracle-timelimit
          • Thm
          • Defopener
          • Gcl
          • Case-split-limitations
          • Set-gc-strategy
          • Default-defun-mode
          • Top-level
          • Reader
          • Ttags-seen
          • Adviser
          • Ttree
          • Abort-soft
          • Defsums
          • Gc$
          • With-timeout
          • Coi-debug::fail
          • Expander
          • Gc-strategy
          • Coi-debug::assert
          • Sin-cos
          • Def::doc
          • Syntax
          • Subversive-inductions
        • Output-controls
        • Macros
        • Interfacing-tools
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Ordinals
    • ACL2-built-ins

    O-finp

    Recognizes if an ordinal is finite

    We introduce the function o-finp which returns t for any ordinal that is finite, else nil. This function is equivalent to the function atom, and is introduced so that we can disable its definition when dealing with ordinals (also see make-ord).

    Function: o-finp

    (defun o-finp (x)
           (declare (xargs :guard t))
           (atom x))