• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Error-checking
        • Apt
        • Abnf
        • Fty-extensions
          • Defbyte
          • Defresult
          • Defsubtype
          • Pos-list
            • Defflatsum
            • Deflist-of-len
            • Defbytelist
            • Specific-types
            • Defset
            • Defbyte-standard-instances
            • Deffixtype-alias
            • Defomap
            • Defbytelist-standard-instances
            • Defunit
            • Byte-list
            • Byte
            • Nibble
            • Pos-option
            • Nat-option
            • Byte-list20
            • String-option
            • Byte-list32
            • Byte-list64
            • Pseudo-event-form
            • Character-list
            • Natoption/natoptionlist
            • Nati
            • Maybe-string
            • Nat/natlist
            • Nibble-list
            • Natoption/natoptionlist-result
            • Set
            • Nat/natlist-result
            • Nat-option-list-result
            • String-result
            • String-list-result
            • Nat-result
            • Nat-option-result
            • Nat-list-result
            • Maybe-string-result
            • Integer-result
            • Character-result
            • Character-list-result
            • Boolean-result
            • Map
            • Bag
            • Pseudo-event-form-list
            • Nat-option-list
            • Symbol-set
            • Nat-set
            • Bit-list
          • Isar
          • Kestrel-utilities
          • Prime-field-constraint-systems
          • Soft
          • Bv
          • Imp-language
          • Event-macros
          • Bitcoin
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Java
          • C
          • Syntheto
          • Number-theory
          • Cryptography
          • Lists-light
          • File-io-light
          • Json
          • Built-ins
          • Solidity
          • Axe
          • Std-extensions
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Execloader
        • Axe
      • Testing-utilities
      • Math
    • Fty-extensions
    • Specific-types
    • Pos-listp

    Pos-list

    Fixtype of lists of positive integers.

    Definitions and Theorems

    Theorem: pos-listp-of-cons

    (defthm pos-listp-of-cons
            (equal (pos-listp (cons a x))
                   (and (posp a) (pos-listp x)))
            :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-cdr-when-pos-listp

    (defthm pos-listp-of-cdr-when-pos-listp
            (implies (pos-listp (double-rewrite x))
                     (pos-listp (cdr x)))
            :rule-classes ((:rewrite)))

    Theorem: pos-listp-when-not-consp

    (defthm pos-listp-when-not-consp
            (implies (not (consp x))
                     (equal (pos-listp x) (not x)))
            :rule-classes ((:rewrite)))

    Theorem: posp-of-car-when-pos-listp

    (defthm posp-of-car-when-pos-listp
            (implies (pos-listp x)
                     (iff (posp (car x)) (consp x)))
            :rule-classes ((:rewrite)))

    Theorem: true-listp-when-pos-listp-compound-recognizer

    (defthm true-listp-when-pos-listp-compound-recognizer
            (implies (pos-listp x) (true-listp x))
            :rule-classes :compound-recognizer)

    Theorem: pos-listp-of-list-fix

    (defthm pos-listp-of-list-fix
            (implies (pos-listp x)
                     (pos-listp (list-fix x)))
            :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-rev

    (defthm pos-listp-of-rev
            (equal (pos-listp (rev x))
                   (pos-listp (list-fix x)))
            :rule-classes ((:rewrite)))

    Function: pos-list-fix$inline

    (defun pos-list-fix$inline (x)
           (declare (xargs :guard (pos-listp x)))
           (let ((__function__ 'pos-list-fix))
                (declare (ignorable __function__))
                (mbe :logic (if (atom x)
                                nil
                                (cons (pos-fix (car x))
                                      (pos-list-fix (cdr x))))
                     :exec x)))

    Theorem: pos-listp-of-pos-list-fix

    (defthm pos-listp-of-pos-list-fix
            (b* ((fty::newx (pos-list-fix$inline x)))
                (pos-listp fty::newx))
            :rule-classes :rewrite)

    Theorem: pos-list-fix-when-pos-listp

    (defthm pos-list-fix-when-pos-listp
            (implies (pos-listp x)
                     (equal (pos-list-fix x) x)))

    Function: pos-list-equiv$inline

    (defun pos-list-equiv$inline (x y)
           (declare (xargs :guard (and (pos-listp x) (pos-listp y))))
           (equal (pos-list-fix x)
                  (pos-list-fix y)))

    Theorem: pos-list-equiv-is-an-equivalence

    (defthm pos-list-equiv-is-an-equivalence
            (and (booleanp (pos-list-equiv x y))
                 (pos-list-equiv x x)
                 (implies (pos-list-equiv x y)
                          (pos-list-equiv y x))
                 (implies (and (pos-list-equiv x y)
                               (pos-list-equiv y z))
                          (pos-list-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: pos-list-equiv-implies-equal-pos-list-fix-1

    (defthm pos-list-equiv-implies-equal-pos-list-fix-1
            (implies (pos-list-equiv x x-equiv)
                     (equal (pos-list-fix x)
                            (pos-list-fix x-equiv)))
            :rule-classes (:congruence))

    Theorem: pos-list-fix-under-pos-list-equiv

    (defthm pos-list-fix-under-pos-list-equiv
            (pos-list-equiv (pos-list-fix x) x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-pos-list-fix-1-forward-to-pos-list-equiv

    (defthm equal-of-pos-list-fix-1-forward-to-pos-list-equiv
            (implies (equal (pos-list-fix x) y)
                     (pos-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-pos-list-fix-2-forward-to-pos-list-equiv

    (defthm equal-of-pos-list-fix-2-forward-to-pos-list-equiv
            (implies (equal x (pos-list-fix y))
                     (pos-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: pos-list-equiv-of-pos-list-fix-1-forward

    (defthm pos-list-equiv-of-pos-list-fix-1-forward
            (implies (pos-list-equiv (pos-list-fix x) y)
                     (pos-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: pos-list-equiv-of-pos-list-fix-2-forward

    (defthm pos-list-equiv-of-pos-list-fix-2-forward
            (implies (pos-list-equiv x (pos-list-fix y))
                     (pos-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: car-of-pos-list-fix-x-under-pos-equiv

    (defthm car-of-pos-list-fix-x-under-pos-equiv
            (pos-equiv (car (pos-list-fix x))
                       (car x)))

    Theorem: car-pos-list-equiv-congruence-on-x-under-pos-equiv

    (defthm car-pos-list-equiv-congruence-on-x-under-pos-equiv
            (implies (pos-list-equiv x x-equiv)
                     (pos-equiv (car x) (car x-equiv)))
            :rule-classes :congruence)

    Theorem: cdr-of-pos-list-fix-x-under-pos-list-equiv

    (defthm cdr-of-pos-list-fix-x-under-pos-list-equiv
            (pos-list-equiv (cdr (pos-list-fix x))
                            (cdr x)))

    Theorem: cdr-pos-list-equiv-congruence-on-x-under-pos-list-equiv

    (defthm cdr-pos-list-equiv-congruence-on-x-under-pos-list-equiv
            (implies (pos-list-equiv x x-equiv)
                     (pos-list-equiv (cdr x) (cdr x-equiv)))
            :rule-classes :congruence)

    Theorem: cons-of-pos-fix-x-under-pos-list-equiv

    (defthm cons-of-pos-fix-x-under-pos-list-equiv
            (pos-list-equiv (cons (pos-fix x) y)
                            (cons x y)))

    Theorem: cons-pos-equiv-congruence-on-x-under-pos-list-equiv

    (defthm cons-pos-equiv-congruence-on-x-under-pos-list-equiv
            (implies (pos-equiv x x-equiv)
                     (pos-list-equiv (cons x y)
                                     (cons x-equiv y)))
            :rule-classes :congruence)

    Theorem: cons-of-pos-list-fix-y-under-pos-list-equiv

    (defthm cons-of-pos-list-fix-y-under-pos-list-equiv
            (pos-list-equiv (cons x (pos-list-fix y))
                            (cons x y)))

    Theorem: cons-pos-list-equiv-congruence-on-y-under-pos-list-equiv

    (defthm cons-pos-list-equiv-congruence-on-y-under-pos-list-equiv
            (implies (pos-list-equiv y y-equiv)
                     (pos-list-equiv (cons x y)
                                     (cons x y-equiv)))
            :rule-classes :congruence)

    Theorem: consp-of-pos-list-fix

    (defthm consp-of-pos-list-fix
            (equal (consp (pos-list-fix x))
                   (consp x)))

    Theorem: pos-list-fix-under-iff

    (defthm pos-list-fix-under-iff
            (iff (pos-list-fix x) (consp x)))

    Theorem: pos-list-fix-of-cons

    (defthm pos-list-fix-of-cons
            (equal (pos-list-fix (cons a x))
                   (cons (pos-fix a) (pos-list-fix x))))

    Theorem: len-of-pos-list-fix

    (defthm len-of-pos-list-fix
            (equal (len (pos-list-fix x)) (len x)))

    Theorem: pos-list-fix-of-append

    (defthm pos-list-fix-of-append
            (equal (pos-list-fix (append std::a std::b))
                   (append (pos-list-fix std::a)
                           (pos-list-fix std::b))))

    Theorem: pos-list-fix-of-repeat

    (defthm pos-list-fix-of-repeat
            (equal (pos-list-fix (repeat n x))
                   (repeat n (pos-fix x))))

    Theorem: list-equiv-refines-pos-list-equiv

    (defthm list-equiv-refines-pos-list-equiv
            (implies (list-equiv x y)
                     (pos-list-equiv x y))
            :rule-classes :refinement)

    Theorem: nth-of-pos-list-fix

    (defthm nth-of-pos-list-fix
            (equal (nth n (pos-list-fix x))
                   (if (< (nfix n) (len x))
                       (pos-fix (nth n x))
                       nil)))

    Theorem: pos-list-equiv-implies-pos-list-equiv-append-1

    (defthm pos-list-equiv-implies-pos-list-equiv-append-1
            (implies (pos-list-equiv x fty::x-equiv)
                     (pos-list-equiv (append x y)
                                     (append fty::x-equiv y)))
            :rule-classes (:congruence))

    Theorem: pos-list-equiv-implies-pos-list-equiv-append-2

    (defthm pos-list-equiv-implies-pos-list-equiv-append-2
            (implies (pos-list-equiv y fty::y-equiv)
                     (pos-list-equiv (append x y)
                                     (append x fty::y-equiv)))
            :rule-classes (:congruence))

    Theorem: pos-list-equiv-implies-pos-list-equiv-nthcdr-2

    (defthm pos-list-equiv-implies-pos-list-equiv-nthcdr-2
            (implies (pos-list-equiv l l-equiv)
                     (pos-list-equiv (nthcdr n l)
                                     (nthcdr n l-equiv)))
            :rule-classes (:congruence))

    Theorem: pos-list-equiv-implies-pos-list-equiv-take-2

    (defthm pos-list-equiv-implies-pos-list-equiv-take-2
            (implies (pos-list-equiv l l-equiv)
                     (pos-list-equiv (take n l)
                                     (take n l-equiv)))
            :rule-classes (:congruence))