• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
      • Arithmetic
        • Lispfloat
        • Arithmetic-1
        • Number-theory
          • Tonelli-shanks-modular-sqrt-algorithm
          • Defprime
          • Defprime-alias
          • Prime
            • Dm::primep
            • Has-square-root?
            • Prime-fix
            • Secp256k1-group-prime
            • Secp256k1-field-prime
            • Jubjub-subgroup-prime
            • Edwards-bls12-subgroup-prime
            • Bn-254-group-prime
            • Bls12-381-scalar-field-prime
            • Baby-jubjub-subgroup-prime
            • Goldilocks-prime
          • Proof-by-arith
          • Arith-equivs
          • Number-theory
          • Arithmetic-3
          • Arithmetic-2
          • Arithmetic-light
          • Arithmetic-5
        • Bit-vectors
        • Algebra
    • Number-theory

    Prime

    Fixtype of prime numbers.

    Definitions and Theorems

    Function: prime-equiv$inline

    (defun prime-equiv$inline (x y)
           (declare (xargs :guard (and (dm::primep x) (dm::primep y))))
           (equal (prime-fix x) (prime-fix y)))

    Theorem: prime-equiv-is-an-equivalence

    (defthm prime-equiv-is-an-equivalence
            (and (booleanp (prime-equiv x y))
                 (prime-equiv x x)
                 (implies (prime-equiv x y)
                          (prime-equiv y x))
                 (implies (and (prime-equiv x y)
                               (prime-equiv y z))
                          (prime-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: prime-equiv-implies-equal-prime-fix-1

    (defthm prime-equiv-implies-equal-prime-fix-1
            (implies (prime-equiv x x-equiv)
                     (equal (prime-fix x)
                            (prime-fix x-equiv)))
            :rule-classes (:congruence))

    Theorem: prime-fix-under-prime-equiv

    (defthm prime-fix-under-prime-equiv
            (prime-equiv (prime-fix x) x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-prime-fix-1-forward-to-prime-equiv

    (defthm equal-of-prime-fix-1-forward-to-prime-equiv
            (implies (equal (prime-fix x) y)
                     (prime-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-prime-fix-2-forward-to-prime-equiv

    (defthm equal-of-prime-fix-2-forward-to-prime-equiv
            (implies (equal x (prime-fix y))
                     (prime-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: prime-equiv-of-prime-fix-1-forward

    (defthm prime-equiv-of-prime-fix-1-forward
            (implies (prime-equiv (prime-fix x) y)
                     (prime-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: prime-equiv-of-prime-fix-2-forward

    (defthm prime-equiv-of-prime-fix-2-forward
            (implies (prime-equiv x (prime-fix y))
                     (prime-equiv x y))
            :rule-classes :forward-chaining)