• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
        • Equal-by-eval-bdds
        • Ubdd-constructors
          • Q-and
          • Q-ite
          • Q-or
          • Q-implies
          • Q-iff
          • Q-and-c2
          • Q-and-c1
          • Q-or-c2
          • Q-not
          • Q-ite-fn
          • Q-xor
          • Q-and-is-nil
          • Cheap-and-expensive-arguments
          • Q-compose-list
          • Q-compose
            • Qv
            • Q-and-is-nilc2
            • Q-nor
            • Q-nand
          • Eval-bdd
          • Ubddp
          • Ubdd-fix
          • Q-sat
          • Bdd-sat-dfs
          • Eval-bdd-list
          • Qcdr
          • Qcar
          • Q-sat-any
          • Canonicalize-to-q-ite
          • Ubdd-listp
          • Qcons
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Ubdd-constructors

    Q-compose

    (q-compose x l) composes the UBDD x with the list of UBDDs l.

    BOZO document what this is doing. Is it like sexpr compose?

    Definitions and Theorems

    Function: q-compose

    (defun q-compose (x l)
           (declare (xargs :guard t))
           (cond ((atom x) x)
                 ((atom l) (q-compose (cdr x) nil))
                 ((hons-equal (car x) (cdr x))
                  (q-compose (car x) (cdr l)))
                 (t (q-ite (car l)
                           (q-compose (car x) (cdr l))
                           (q-compose (cdr x) (cdr l))))))

    Theorem: ubddp-of-q-compose

    (defthm ubddp-of-q-compose
            (implies (and (force (ubddp x))
                          (force (ubdd-listp l)))
                     (equal (ubddp (q-compose x l)) t)))