• Top
    • Documentation
    • Books
    • Recursion-and-induction
      • R-and-i-annotated-bibliography
      • R-and-i-definitions-revisited
      • R-and-i-terms
      • R-and-i-structural-induction
      • R-and-i-relations-between-recursion-and-induction
      • R-and-i-ordinals
      • R-and-i-inadequacies-of-structural-recursion
      • R-and-i-axioms
      • R-and-i-abbreviations-for-terms
      • R-and-i-terms-as-formulas
      • R-and-i-more-problems
      • R-and-i-still-more-problems
      • R-and-i-definitional-principle
      • R-and-i-function-definitions
      • R-and-i-introduction
      • R-and-i-table-of-contents
      • R-and-i-substitutions
      • R-and-i-arithmetic
      • R-and-i-induction-principle
        • R-and-i-data-types
        • R-and-i-more-inadequacies-of-the-definitional-principle
      • Boolean-reasoning
      • Debugging
      • Projects
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Recursion-and-induction

    R-and-i-induction-principle

    Recursion and Induction: The Induction Principle

    The Induction Principle allows one to derive an arbitrary formula, ψ, from

    • Base Case : (implies (and (not q_1) … (not q_k)) ψ), and

    • Induction Step(s) : For each 1≤i≤k,
      (implies (and q_i ψ/σ_{i,1} … ψ/σ_{i,h_i})
               ψ),

    provided that for terms m, q_1,...q_k, and substitutions σ_{i,j}  (1≤i≤k, 1≤j≤h_i), the following are theorems:

    • Ordinal Conjecture : (o-p m), and

    • Measure Conjecture(s) : For each 1≤i≤k and 1≤j≤h_i,
      (implies q_i (o< m/σ_{i,j}  m)).

    Next: Relations Between Recursion and Induction (or Table of Contents)