• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
      • Std/lists
        • Std/lists/abstract
        • Rev
        • Defsort
        • List-fix
        • Std/lists/nth
        • Hons-remove-duplicates
        • Std/lists/update-nth
        • Set-equiv
          • Set-equiv-congruences
            • Set-unequal-witness
          • Duplicity
          • Prefixp
          • Std/lists/take
          • Std/lists/intersection$
          • Nats-equiv
          • Repeat
          • Index-of
          • All-equalp
          • Sublistp
          • Std/lists/nthcdr
          • Std/lists/append
          • Listpos
          • List-equiv
          • Final-cdr
          • Std/lists/remove
          • Subseq-list
          • Rcons
          • Std/lists/revappend
          • Std/lists/remove-duplicates-equal
          • Std/lists/last
          • Std/lists/reverse
          • Std/lists/resize-list
          • Flatten
          • Suffixp
          • Std/lists/set-difference
          • Std/lists/butlast
          • Std/lists/len
          • Std/lists/intersectp
          • Std/lists/true-listp
          • Intersectp-witness
          • Subsetp-witness
          • Std/lists/remove1-equal
          • Rest-n
          • First-n
          • Std/lists/union
          • Append-without-guard
          • Std/lists/subsetp
          • Std/lists/member
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Set-equiv

    Set-equiv-congruences

    Basic congruence rules relating set-equiv to list functions.

    Definitions and Theorems

    Theorem: set-equiv-implies-iff-member-2

    (defthm set-equiv-implies-iff-member-2
            (implies (set-equiv y y-equiv)
                     (iff (member x y) (member x y-equiv)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-equal-subsetp-2

    (defthm set-equiv-implies-equal-subsetp-2
            (implies (set-equiv y y-equiv)
                     (equal (subsetp x y)
                            (subsetp x y-equiv)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-equal-subsetp-1

    (defthm set-equiv-implies-equal-subsetp-1
            (implies (set-equiv x x-equiv)
                     (equal (subsetp x y)
                            (subsetp x-equiv y)))
            :rule-classes (:congruence))

    Theorem: element-list-p-set-equiv-congruence

    (defthm element-list-p-set-equiv-congruence
            (implies (and (element-list-final-cdr-p t)
                          (set-equiv x y))
                     (equal (equal (element-list-p x)
                                   (element-list-p y))
                            t))
            :rule-classes :rewrite)

    Theorem: set-equiv-implies-equal-intersection-equal-2

    (defthm set-equiv-implies-equal-intersection-equal-2
            (implies (set-equiv y y-equiv)
                     (equal (intersection-equal x y)
                            (intersection-equal x y-equiv)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-set-equiv-intersection-equal-1

    (defthm set-equiv-implies-set-equiv-intersection-equal-1
            (implies (set-equiv x x-equiv)
                     (set-equiv (intersection-equal x y)
                                (intersection-equal x-equiv y)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-equal-set-difference-equal-2

    (defthm set-equiv-implies-equal-set-difference-equal-2
            (implies (set-equiv y y-equiv)
                     (equal (set-difference-equal x y)
                            (set-difference-equal x y-equiv)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-set-equiv-set-difference-equal-1

    (defthm set-equiv-implies-set-equiv-set-difference-equal-1
            (implies (set-equiv x x-equiv)
                     (set-equiv (set-difference-equal x y)
                                (set-difference-equal x-equiv y)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-equal-consp-1

    (defthm set-equiv-implies-equal-consp-1
            (implies (set-equiv x x-equiv)
                     (equal (consp x) (consp x-equiv)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-equal-atom-1

    (defthm set-equiv-implies-equal-atom-1
            (implies (set-equiv x x-equiv)
                     (equal (atom x) (atom x-equiv)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-equal-intersectp-1

    (defthm set-equiv-implies-equal-intersectp-1
            (implies (set-equiv x x-equiv)
                     (equal (intersectp x y)
                            (intersectp x-equiv y)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-equal-intersectp-2

    (defthm set-equiv-implies-equal-intersectp-2
            (implies (set-equiv y y-equiv)
                     (equal (intersectp x y)
                            (intersectp x y-equiv)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-set-equiv-append-2

    (defthm set-equiv-implies-set-equiv-append-2
            (implies (set-equiv y y-equiv)
                     (set-equiv (append x y)
                                (append x y-equiv)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-set-equiv-append-1

    (defthm set-equiv-implies-set-equiv-append-1
            (implies (set-equiv x x-equiv)
                     (set-equiv (append x y)
                                (append x-equiv y)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-equal-len-remove-duplicates-equal

    (defthm set-equiv-implies-equal-len-remove-duplicates-equal
            (implies (set-equiv x y)
                     (equal (len (remove-duplicates-equal x))
                            (len (remove-duplicates-equal y))))
            :rule-classes :congruence)