• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Abnf
        • Fty-extensions
        • Isar
        • Kestrel-utilities
          • Omaps
          • Directed-untranslate
          • Include-book-paths
          • Ubi
          • Digits-any-base
          • Context-message-pair
          • Numbered-names
          • With-auto-termination
          • Make-termination-theorem
          • Theorems-about-true-list-lists
          • Checkpoint-list
          • Sublis-expr+
          • Prove$
          • Defthm<w
          • System-utilities-non-built-in
          • Integer-range-fix
          • Add-const-to-untranslate-preprocess
          • Minimize-ruler-extenders
          • Integers-from-to
          • Unsigned-byte-fix
          • Signed-byte-fix
          • Defthmr
          • Paired-names
          • Unsigned-byte-list-fix
          • Signed-byte-list-fix
          • Show-books
          • List-utilities
            • Set-size
              • Set-size-theorems
                • Set-size-lemmas
              • Set-size-functions-and-macros
            • List-len-const-theorems
            • Nthcdr-theorems
            • Append-theorems
            • Rev-theorems
            • Prefixp-theorems
            • Take-theorems
            • Intersectp-equal-theorems
            • Add-to-set-equal-theorems
            • List-primitive-theorems
            • Set-difference-equal-theorems
            • Intersection-equal-theorems
            • Index-of-theorems
            • Last-theorems
          • Skip-in-book
          • Typed-tuplep
          • Checkpoint-list-pretty
          • Defunt
          • Keyword-value-list-to-alist
          • Magic-macroexpand
          • Top-command-number-fn
          • Bits-as-digits-in-base-2
          • Show-checkpoint-list
          • Ubyte11s-as-digits-in-base-2048
          • Named-formulas
          • Bytes-as-digits-in-base-256
          • String-utilities
          • Make-keyword-value-list-from-keys-and-value
          • Defmacroq
          • Integer-range-listp
          • Apply-fn-if-known
          • Trans-eval-error-triple
          • Checkpoint-info-list
          • Previous-subsumer-hints
          • Fms!-lst
          • Zp-listp
          • Trans-eval-state
          • Injections
          • Doublets-to-alist
          • Theorems-about-osets
          • Typed-list-utilities
          • Book-runes-alist
          • User-interface
          • Bits/ubyte11s-digit-grouping
          • Bits/bytes-digit-grouping
          • Message-utilities
          • Subsetp-eq-linear
          • Oset-utilities
          • Strict-merge-sort-<
          • Miscellaneous-enumerations
          • Maybe-unquote
          • Thm<w
          • Defthmd<w
          • Io-utilities
        • Pfcs
        • Soft
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • C
        • Syntheto
        • File-io-light
        • Number-theory
        • Cryptography
        • Lists-light
        • Json
        • Axe
        • Builtins
        • Solidity
        • Std-extensions
        • Helpers
        • Htclient
        • Typed-lists-light
        • Arithmetic-light
      • X86isa
      • Axe
      • Execloader
    • Math
    • Testing-utilities
  • Set-size

Set-size-theorems

Theorems about set-size.

Definitions and Theorems

Theorem: set-size-zero-empty

(defthm set-size-zero-empty
  (equal (equal (set-size-equal x) 0)
         (atom x)))

Theorem: set-size-of-true-list-fix

(defthm set-size-of-true-list-fix
  (equal (set-size-equal (true-list-fix x))
         (set-size-equal x)))

Theorem: set-size-of-cons

(defthm set-size-of-cons
  (equal (set-size-equal (cons a x))
         (if (member-equal a x)
             (set-size-equal x)
           (1+ (set-size-equal x)))))

Theorem: set-size-of-add-to-set

(defthm set-size-of-add-to-set
  (equal (set-size-equal (add-to-set-equal a x))
         (if (member-equal a x)
             (set-size-equal x)
           (1+ (set-size-equal x)))))

Theorem: set-size-of-remove

(defthm set-size-of-remove
  (equal (set-size-equal (remove-equal a x))
         (if (member-equal a x)
             (1- (set-size-equal x))
           (set-size-equal x))))

Theorem: list-equiv-implies-equal-set-size-equal-1

(defthm list-equiv-implies-equal-set-size-equal-1
  (implies (list-equiv x x-equiv)
           (equal (set-size-equal x)
                  (set-size-equal x-equiv)))
  :rule-classes (:congruence))

Theorem: set-size-when-subsetp

(defthm set-size-when-subsetp
  (implies (subsetp-equal x y)
           (<= (set-size-equal x)
               (set-size-equal y))))

Theorem: set-size-when-subsetp-linear

(defthm set-size-when-subsetp-linear
  (implies (subsetp-equal x y)
           (<= (set-size-equal x)
               (set-size-equal y)))
  :rule-classes :linear)

Theorem: set-size-when-strict-subsetp

(defthm set-size-when-strict-subsetp
  (implies (and (subsetp-equal x y)
                (not (subsetp-equal y x)))
           (< (set-size-equal x)
              (set-size-equal y))))

Theorem: set-size-when-strict-subsetp-linear

(defthm set-size-when-strict-subsetp-linear
  (implies (and (subsetp-equal x y)
                (not (subsetp-equal y x)))
           (< (set-size-equal x)
              (set-size-equal y)))
  :rule-classes :linear)

Theorem: set-size-when-set-equiv

(defthm set-size-when-set-equiv
  (implies (set-equiv x y)
           (equal (set-size-equal x)
                  (set-size-equal y))))

Theorem: set-size-when-set-equiv-linear

(defthm set-size-when-set-equiv-linear
  (implies (set-equiv x y)
           (equal (set-size-equal x)
                  (set-size-equal y)))
  :rule-classes :linear)

Theorem: set-equiv-implies-equal-set-size-equal-1

(defthm set-equiv-implies-equal-set-size-equal-1
  (implies (set-equiv x x-equiv)
           (equal (set-size-equal x)
                  (set-size-equal x-equiv)))
  :rule-classes (:congruence))

Subtopics

Set-size-lemmas
Lemmas useful to prove some of the theorems about set-size.