• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
        • Alist-keys
        • Remove-assocs
        • Alist-vals
        • Alist-map-vals
        • Std/alists/strip-cdrs
        • Hons-rassoc-equal
        • Alist-map-keys
        • Std/alists/hons-assoc-equal
          • Fal-extract
          • Std/alists/strip-cars
          • Fal-find-any
          • Fal-extract-vals
          • Std/alists/abstract
          • Fal-all-boundp
          • Std/alists/alistp
          • Append-alist-vals
          • Append-alist-keys
          • Alist-equiv
          • Hons-remove-assoc
          • Std/alists/pairlis$
          • Alists-agree
          • Worth-hashing
          • Sub-alistp
          • Alist-fix
          • Std/alists/remove-assoc-equal
          • Std/alists/assoc-equal
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/alists
    • Hons-assoc-equal
    • Hons-get

    Std/alists/hons-assoc-equal

    Lemmas about hons-assoc-equal available in the std/alists library.

    NOTE: It is a good idea to be very clear on the relationship between hons-get and hons-assoc-equal:

    • To get hash table speeds out of fast-alists during execution, you must write your functions in terms of hons-get instead of hons-assoc-equal! But,
    • You should never write theorems about hons-get! It just rewrites into hons-assoc-equal. We always reason in terms of hons-assoc-equal, which is useful, e.g., to avoid spurious slow-alist-warnings during proofs.

    hons-assoc-equal is the "modern" alternative to assoc, and properly respect the non-alist convention; see std/alists for discussion of this convention.

    Definitions and Theorems

    Theorem: hons-assoc-equal-when-atom

    (defthm hons-assoc-equal-when-atom
            (implies (atom alist)
                     (equal (hons-assoc-equal a alist) nil)))

    Theorem: hons-assoc-equal-of-cons

    (defthm hons-assoc-equal-of-cons
            (equal (hons-assoc-equal key (cons entry map))
                   (if (and (consp entry)
                            (equal key (car entry)))
                       entry (hons-assoc-equal key map))))

    Theorem: list-equiv-implies-equal-hons-assoc-equal-2

    (defthm list-equiv-implies-equal-hons-assoc-equal-2
            (implies (list-equiv alist alist-equiv)
                     (equal (hons-assoc-equal key alist)
                            (hons-assoc-equal key alist-equiv)))
            :rule-classes (:congruence))

    Theorem: hons-assoc-equal-of-hons-acons

    (defthm hons-assoc-equal-of-hons-acons
            (equal (hons-assoc-equal key (hons-acons key2 val map))
                   (if (equal key key2)
                       (cons key val)
                       (hons-assoc-equal key map))))

    Theorem: consp-of-hons-assoc-equal

    (defthm consp-of-hons-assoc-equal
            (equal (consp (hons-assoc-equal x alist))
                   (if (hons-assoc-equal x alist) t nil)))

    Theorem: car-hons-assoc-equal

    (defthm car-hons-assoc-equal
            (implies (hons-assoc-equal k a)
                     (equal (car (hons-assoc-equal k a)) k)))

    Theorem: car-hons-assoc-equal-split

    (defthm car-hons-assoc-equal-split
            (equal (car (hons-assoc-equal key alist))
                   (if (hons-assoc-equal key alist)
                       key nil)))

    Theorem: hons-assoc-equal-append

    (defthm hons-assoc-equal-append
            (equal (hons-assoc-equal x (append a b))
                   (or (hons-assoc-equal x a)
                       (hons-assoc-equal x b))))

    Theorem: hons-assoc-equal-of-hons-shrink-alist

    (defthm hons-assoc-equal-of-hons-shrink-alist
            (equal (hons-assoc-equal a (hons-shrink-alist x y))
                   (or (hons-assoc-equal a y)
                       (hons-assoc-equal a x))))

    Theorem: cons-key-cdr-hons-assoc-equal

    (defthm cons-key-cdr-hons-assoc-equal
            (implies (hons-assoc-equal k a)
                     (equal (cons k (cdr (hons-assoc-equal k a)))
                            (hons-assoc-equal k a))))