• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
        • Alist-keys
        • Remove-assocs
        • Alist-vals
        • Alist-map-vals
        • Std/alists/strip-cdrs
        • Hons-rassoc-equal
        • Alist-map-keys
        • Std/alists/hons-assoc-equal
        • Fal-extract
        • Std/alists/strip-cars
        • Fal-find-any
        • Fal-extract-vals
        • Std/alists/abstract
        • Fal-all-boundp
        • Std/alists/alistp
        • Append-alist-vals
        • Append-alist-keys
        • Alist-equiv
        • Hons-remove-assoc
        • Std/alists/pairlis$
          • Alists-agree
          • Worth-hashing
          • Sub-alistp
          • Alist-fix
          • Std/alists/remove-assoc-equal
          • Std/alists/assoc-equal
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/alists
    • Pairlis$

    Std/alists/pairlis$

    Lemmas about pairlis$ available in the std/alists library.

    (pairlis$ x y) is a perfectly reasonable way to create a proper, nil-terminated alistp which can be used with either "traditional" or "modern" alist functions.

    Definitions and Theorems

    Theorem: pairlis$-when-atom

    (defthm pairlis$-when-atom
            (implies (atom x)
                     (equal (pairlis$ x y) nil)))

    Theorem: pairlis$-of-cons

    (defthm pairlis$-of-cons
            (equal (pairlis$ (cons a x) y)
                   (cons (cons a (car y))
                         (pairlis$ x (cdr y)))))

    Theorem: len-of-pairlis$

    (defthm len-of-pairlis$
            (equal (len (pairlis$ x y)) (len x)))

    Theorem: alistp-of-pairlis$

    (defthm alistp-of-pairlis$
            (alistp (pairlis$ x y)))

    Theorem: strip-cars-of-pairlis$

    (defthm strip-cars-of-pairlis$
            (equal (strip-cars (pairlis$ x y))
                   (list-fix x)))

    Theorem: strip-cdrs-of-pairlis$

    (defthm strip-cdrs-of-pairlis$
            (equal (strip-cdrs (pairlis$ x y))
                   (take (len x) y)))

    Theorem: pairlis$-of-list-fix-left

    (defthm pairlis$-of-list-fix-left
            (equal (pairlis$ (list-fix x) y)
                   (pairlis$ x y)))

    Theorem: pairlis$-of-list-fix-right

    (defthm pairlis$-of-list-fix-right
            (equal (pairlis$ x (list-fix y))
                   (pairlis$ x y)))

    Theorem: list-equiv-implies-equal-pairlis$-1

    (defthm list-equiv-implies-equal-pairlis$-1
            (implies (list-equiv x x-equiv)
                     (equal (pairlis$ x y)
                            (pairlis$ x-equiv y)))
            :rule-classes (:congruence))

    Theorem: list-equiv-implies-equal-pairlis$-2

    (defthm list-equiv-implies-equal-pairlis$-2
            (implies (list-equiv y y-equiv)
                     (equal (pairlis$ x y)
                            (pairlis$ x y-equiv)))
            :rule-classes (:congruence))