• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
      • Std/lists
      • Std/alists
        • Alist-keys
        • Remove-assocs
        • Alist-vals
        • Alist-map-vals
        • Std/alists/strip-cdrs
          • Hons-rassoc-equal
          • Alist-map-keys
          • Std/alists/hons-assoc-equal
          • Fal-extract
          • Std/alists/strip-cars
          • Fal-find-any
          • Fal-extract-vals
          • Std/alists/abstract
          • Fal-all-boundp
          • Std/alists/alistp
          • Append-alist-vals
          • Append-alist-keys
          • Alist-equiv
          • Hons-remove-assoc
          • Std/alists/pairlis$
          • Alists-agree
          • Worth-hashing
          • Sub-alistp
          • Alist-fix
          • Std/alists/remove-assoc-equal
          • Std/alists/assoc-equal
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/alists
    • Strip-cdrs

    Std/alists/strip-cdrs

    Lemmas about strip-cdrs available in the std/alists library.

    Note that strip-cdrs is a "traditional" alist function: it has an alistp guard and fails to respect the non-alist convention. We generally prefer to work with alist-vals instead.

    Even so, we provide many lemmas for working with strip-cdrs, in case for some reason that's what you want to do.

    Definitions and Theorems

    Theorem: strip-cdrs-when-atom

    (defthm strip-cdrs-when-atom
            (implies (atom x)
                     (equal (strip-cdrs x) nil)))

    Theorem: strip-cdrs-of-cons

    (defthm strip-cdrs-of-cons
            (equal (strip-cdrs (cons a x))
                   (cons (cdr a) (strip-cdrs x))))

    Theorem: len-of-strip-cdrs

    (defthm len-of-strip-cdrs
            (equal (len (strip-cdrs x)) (len x)))

    Theorem: consp-of-strip-cdrs

    (defthm consp-of-strip-cdrs
            (equal (consp (strip-cdrs x))
                   (consp x)))

    Theorem: car-of-strip-cdrs

    (defthm car-of-strip-cdrs
            (equal (car (strip-cdrs x))
                   (cdr (car x))))

    Theorem: cdr-of-strip-cdrs

    (defthm cdr-of-strip-cdrs
            (equal (cdr (strip-cdrs x))
                   (strip-cdrs (cdr x))))

    Theorem: strip-cdrs-under-iff

    (defthm strip-cdrs-under-iff
            (iff (strip-cdrs x) (consp x)))

    Theorem: strip-cdrs-of-list-fix

    (defthm strip-cdrs-of-list-fix
            (equal (strip-cdrs (list-fix x))
                   (strip-cdrs x)))

    Theorem: list-equiv-implies-equal-strip-cdrs-1

    (defthm list-equiv-implies-equal-strip-cdrs-1
            (implies (list-equiv x x-equiv)
                     (equal (strip-cdrs x)
                            (strip-cdrs x-equiv)))
            :rule-classes (:congruence))

    Theorem: set-equiv-implies-set-equiv-strip-cdrs-1

    (defthm set-equiv-implies-set-equiv-strip-cdrs-1
            (implies (set-equiv x x-equiv)
                     (set-equiv (strip-cdrs x)
                                (strip-cdrs x-equiv)))
            :rule-classes (:congruence))

    Theorem: strip-cdrs-of-append

    (defthm strip-cdrs-of-append
            (equal (strip-cdrs (append x y))
                   (append (strip-cdrs x) (strip-cdrs y))))

    Theorem: strip-cdrs-of-rev

    (defthm strip-cdrs-of-rev
            (equal (strip-cdrs (rev x))
                   (rev (strip-cdrs x))))

    Theorem: strip-cdrs-of-revappend

    (defthm strip-cdrs-of-revappend
            (equal (strip-cdrs (revappend x y))
                   (revappend (strip-cdrs x)
                              (strip-cdrs y))))

    Theorem: strip-cdrs-of-repeat

    (defthm strip-cdrs-of-repeat
            (equal (strip-cdrs (repeat n x))
                   (repeat n (cdr x))))

    Theorem: strip-cdrs-of-take

    (defthm strip-cdrs-of-take
            (equal (strip-cdrs (take n x))
                   (take n (strip-cdrs x))))

    Theorem: strip-cdrs-of-nthcdr

    (defthm strip-cdrs-of-nthcdr
            (equal (strip-cdrs (nthcdr n x))
                   (nthcdr n (strip-cdrs x))))

    Theorem: strip-cdrs-of-last

    (defthm strip-cdrs-of-last
            (equal (strip-cdrs (last x))
                   (last (strip-cdrs x))))

    Theorem: strip-cdrs-of-butlast

    (defthm strip-cdrs-of-butlast
            (equal (strip-cdrs (butlast x n))
                   (butlast (strip-cdrs x) n)))

    Theorem: strip-cdrs-of-pairlis$

    (defthm strip-cdrs-of-pairlis$
            (equal (strip-cdrs (pairlis$ x y))
                   (take (len x) y)))