• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/io
        • Open-channel-lemmas
        • Std/io/read-char$
        • Std/io/read-object
        • Std/io/open-output-channel
        • Unsound-read
        • Read-string
        • Read-bytes$
        • File-measure
        • Read-bytes$-n
        • Std/io/read-byte$
        • Std/io/open-input-channel
        • Print-compressed
        • Read-file-lines-no-newlines
        • Nthcdr-bytes
        • Read-file-lines
        • Std/io/close-output-channel
        • Read-file-characters
        • Read-file-bytes
        • Print-legibly
        • Std/io/close-input-channel
        • Read-file-objects
        • Logical-story-of-io
        • Take-bytes
        • Std/io/peek-char$
        • Read-file-characters-rev
        • Read-file-as-string
        • Std/io/write-byte$
        • Std/io/set-serialize-character
        • Std/io/print-object$
        • Std/io/princ$
          • Std/io/read-file-into-string
          • *file-types*
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/io
    • Princ$

    Std/io/princ$

    Print an atom to a :character output stream.

    ACL2 has nice documentation for princ$. The std/io library adds the following lemmas:

    Definitions and Theorems

    Theorem: state-p1-of-princ$

    (defthm state-p1-of-princ$
            (implies (and (state-p1 state)
                          (symbolp channel)
                          (open-output-channel-p1 channel
                                                  :character state))
                     (state-p1 (princ$ x channel state))))

    Theorem: open-output-channel-p1-of-princ$

    (defthm
     open-output-channel-p1-of-princ$
     (implies
          (and (state-p1 state)
               (open-output-channel-p1 channel
                                       :character state))
          (open-output-channel-p1 channel
                                  :character (princ$ x channel state))))