• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
        • Std/lists/abstract
        • Rev
        • Defsort
        • List-fix
        • Std/lists/nth
        • Hons-remove-duplicates
        • Std/lists/update-nth
        • Set-equiv
        • Duplicity
        • Prefixp
        • Std/lists/take
        • Std/lists/intersection$
        • Nats-equiv
        • Repeat
        • Index-of
        • All-equalp
        • Sublistp
        • Std/lists/nthcdr
        • Std/lists/append
          • Listpos
          • List-equiv
          • Final-cdr
          • Std/lists/remove
          • Subseq-list
          • Rcons
          • Std/lists/revappend
          • Std/lists/remove-duplicates-equal
          • Std/lists/last
          • Std/lists/reverse
          • Std/lists/resize-list
          • Flatten
          • Suffixp
          • Std/lists/set-difference
          • Std/lists/butlast
          • Std/lists/len
          • Std/lists/intersectp
          • Std/lists/true-listp
          • Intersectp-witness
          • Subsetp-witness
          • Std/lists/remove1-equal
          • Rest-n
          • First-n
          • Std/lists/union
          • Append-without-guard
          • Std/lists/subsetp
          • Std/lists/member
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/lists
    • Append

    Std/lists/append

    Lemmas about append available in the std/lists library.

    Definitions and Theorems

    Theorem: append-when-not-consp

    (defthm append-when-not-consp
            (implies (not (consp x))
                     (equal (append x y) y)))

    Theorem: append-of-cons

    (defthm append-of-cons
            (equal (append (cons a x) y)
                   (cons a (append x y))))

    Theorem: true-listp-of-append

    (defthm true-listp-of-append
            (equal (true-listp (append x y))
                   (true-listp y)))

    Theorem: consp-of-append

    (defthm consp-of-append
            (equal (consp (append x y))
                   (or (consp x) (consp y))))

    Theorem: append-under-iff

    (defthm append-under-iff
            (iff (append x y) (or (consp x) y)))

    Theorem: len-of-append

    (defthm len-of-append
            (equal (len (append x y))
                   (+ (len x) (len y))))

    Theorem: equal-when-append-same

    (defthm equal-when-append-same
            (equal (equal (append x y1) (append x y2))
                   (equal y1 y2)))

    Theorem: equal-of-append-and-append-same-arg2

    (defthm equal-of-append-and-append-same-arg2
            (equal (equal (append x1 y) (append x2 y))
                   (equal (true-list-fix x1)
                          (true-list-fix x2))))

    Theorem: append-of-nil

    (defthm append-of-nil
            (equal (append x nil) (list-fix x)))

    Theorem: list-fix-of-append

    (defthm list-fix-of-append
            (equal (list-fix (append x y))
                   (append x (list-fix y))))

    Theorem: car-of-append

    (defthm car-of-append
            (equal (car (append x y))
                   (if (consp x) (car x) (car y))))

    Theorem: car-of-append-when-consp

    (defthm car-of-append-when-consp
            (implies (consp x)
                     (equal (car (append x y)) (car x))))

    Theorem: cdr-of-append

    (defthm cdr-of-append
            (equal (cdr (append x y))
                   (if (consp x)
                       (append (cdr x) y)
                       (cdr y))))

    Theorem: cdr-of-append-when-consp

    (defthm cdr-of-append-when-consp
            (implies (consp x)
                     (equal (cdr (append x y))
                            (append (cdr x) y))))

    Theorem: associativity-of-append

    (defthm associativity-of-append
            (equal (append (append a b) c)
                   (append a (append b c))))

    Theorem: element-list-equiv-implies-element-list-equiv-append-1

    (defthm element-list-equiv-implies-element-list-equiv-append-1
            (implies (element-list-equiv a a-equiv)
                     (element-list-equiv (append a b)
                                         (append a-equiv b)))
            :rule-classes (:congruence))

    Theorem: element-list-equiv-implies-element-list-equiv-append-2

    (defthm element-list-equiv-implies-element-list-equiv-append-2
            (implies (element-list-equiv b b-equiv)
                     (element-list-equiv (append a b)
                                         (append a b-equiv)))
            :rule-classes (:congruence))

    Theorem: element-list-p-of-append-true-list

    (defthm element-list-p-of-append-true-list
            (equal (element-list-p (append a b))
                   (and (element-list-p (list-fix a))
                        (element-list-p b)))
            :rule-classes :rewrite)