• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
        • Std/lists/abstract
        • Rev
        • Defsort
        • List-fix
        • Std/lists/nth
        • Hons-remove-duplicates
        • Std/lists/update-nth
        • Set-equiv
        • Duplicity
        • Prefixp
        • Std/lists/take
        • Std/lists/intersection$
        • Nats-equiv
        • Repeat
        • Index-of
        • All-equalp
        • Sublistp
        • Std/lists/nthcdr
        • Std/lists/append
        • Listpos
        • List-equiv
        • Final-cdr
        • Std/lists/remove
        • Subseq-list
        • Rcons
        • Std/lists/revappend
        • Std/lists/remove-duplicates-equal
        • Std/lists/last
          • Std/lists/reverse
          • Std/lists/resize-list
          • Flatten
          • Suffixp
          • Std/lists/set-difference
          • Std/lists/butlast
          • Std/lists/len
          • Std/lists/intersectp
          • Std/lists/true-listp
          • Intersectp-witness
          • Subsetp-witness
          • Std/lists/remove1-equal
          • Rest-n
          • First-n
          • Std/lists/union
          • Append-without-guard
          • Std/lists/subsetp
          • Std/lists/member
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/lists
    • Last

    Std/lists/last

    Lemmas about last available in the std/lists library.

    Definitions and Theorems

    Theorem: last-when-atom

    (defthm last-when-atom
            (implies (atom x) (equal (last x) x)))

    Theorem: last-when-atom-of-cdr

    (defthm last-when-atom-of-cdr
            (implies (atom (cdr x))
                     (equal (last x) x)))

    Theorem: last-of-cons

    (defthm last-of-cons
            (equal (last (cons a x))
                   (if (consp x) (last x) (cons a x))))

    Theorem: consp-of-last

    (defthm consp-of-last
            (equal (consp (last l)) (consp l)))

    Theorem: true-listp-of-last

    (defthm true-listp-of-last
            (equal (true-listp (last l))
                   (true-listp l)))

    Theorem: len-of-last

    (defthm len-of-last
            (equal (len (last l))
                   (if (consp l) 1 0)))

    Theorem: upper-bound-of-len-of-last

    (defthm upper-bound-of-len-of-last
            (< (len (last x)) 2)
            :rule-classes :linear)

    Theorem: member-of-car-of-last

    (defthm member-of-car-of-last
            (iff (member (car (last x)) x)
                 (if (consp x) t nil)))

    Theorem: subsetp-of-last

    (defthm subsetp-of-last (subsetp (last x) x))

    Theorem: last-of-append

    (defthm last-of-append
            (equal (last (append x y))
                   (if (consp y)
                       (last y)
                       (append (last x) y))))

    Theorem: last-of-rev

    (defthm last-of-rev
            (equal (last (rev x))
                   (if (consp x) (list (car x)) nil)))

    Theorem: last-of-revappend

    (defthm last-of-revappend
            (equal (last (revappend x y))
                   (cond ((consp y) (last y))
                         ((consp x) (cons (car x) y))
                         (t y))))

    Theorem: element-list-p-of-last

    (defthm element-list-p-of-last
            (implies (element-list-p (double-rewrite x))
                     (element-list-p (last x)))
            :rule-classes :rewrite)