• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
        • Std/lists/abstract
        • Rev
        • Defsort
        • List-fix
        • Std/lists/nth
        • Hons-remove-duplicates
        • Std/lists/update-nth
        • Set-equiv
        • Duplicity
        • Prefixp
        • Std/lists/take
        • Std/lists/intersection$
        • Nats-equiv
        • Repeat
        • Index-of
        • All-equalp
        • Sublistp
        • Std/lists/nthcdr
        • Std/lists/append
        • Listpos
        • List-equiv
        • Final-cdr
        • Std/lists/remove
        • Subseq-list
        • Rcons
        • Std/lists/revappend
        • Std/lists/remove-duplicates-equal
        • Std/lists/last
        • Std/lists/reverse
        • Std/lists/resize-list
        • Flatten
        • Suffixp
        • Std/lists/set-difference
        • Std/lists/butlast
        • Std/lists/len
          • Std/lists/intersectp
          • Std/lists/true-listp
          • Intersectp-witness
          • Subsetp-witness
          • Std/lists/remove1-equal
          • Rest-n
          • First-n
          • Std/lists/union
          • Append-without-guard
          • Std/lists/subsetp
          • Std/lists/member
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/lists
    • Len

    Std/lists/len

    Lemmas about len available in the std/lists library.

    Definitions and Theorems

    Theorem: len-when-atom

    (defthm len-when-atom
            (implies (atom x) (equal (len x) 0)))

    Theorem: len-of-cons

    (defthm len-of-cons
            (equal (len (cons a x)) (+ 1 (len x))))

    Theorem: (equal 0 (len x))

    (defthm |(equal 0 (len x))|
            (equal (equal 0 (len x)) (atom x)))

    Theorem: (< 0 (len x))

    (defthm |(< 0 (len x))|
            (equal (< 0 (len x)) (consp x)))

    Theorem: consp-by-len

    (defthm consp-by-len
            (implies (and (equal (len x) n)
                          (syntaxp (quotep n)))
                     (equal (consp x) (< 0 n))))

    Theorem: consp-of-cdr-by-len

    (defthm consp-of-cdr-by-len
            (implies (and (equal (len x) n)
                          (syntaxp (quotep n)))
                     (equal (consp (cdr x)) (< 1 n))))

    Theorem: consp-of-cddr-by-len

    (defthm consp-of-cddr-by-len
            (implies (and (equal (len x) n)
                          (syntaxp (quotep n)))
                     (equal (consp (cddr x)) (< 2 n))))

    Theorem: consp-of-cdddr-by-len

    (defthm consp-of-cdddr-by-len
            (implies (and (equal (len x) n)
                          (syntaxp (quotep n)))
                     (equal (consp (cdddr x)) (< 3 n))))