• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
        • Std/lists/abstract
        • Rev
        • Defsort
        • List-fix
        • Std/lists/nth
        • Hons-remove-duplicates
        • Std/lists/update-nth
        • Set-equiv
        • Duplicity
        • Prefixp
        • Std/lists/take
        • Std/lists/intersection$
        • Nats-equiv
        • Repeat
        • Index-of
        • All-equalp
        • Sublistp
        • Std/lists/nthcdr
          • Std/lists/append
          • Listpos
          • List-equiv
          • Final-cdr
          • Std/lists/remove
          • Subseq-list
          • Rcons
          • Std/lists/revappend
          • Std/lists/remove-duplicates-equal
          • Std/lists/last
          • Std/lists/reverse
          • Std/lists/resize-list
          • Flatten
          • Suffixp
          • Std/lists/set-difference
          • Std/lists/butlast
          • Std/lists/len
          • Std/lists/intersectp
          • Std/lists/true-listp
          • Intersectp-witness
          • Subsetp-witness
          • Std/lists/remove1-equal
          • Rest-n
          • First-n
          • Std/lists/union
          • Append-without-guard
          • Std/lists/subsetp
          • Std/lists/member
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/io
        • Std/osets
        • Std/system
        • Std/basic
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Std/lists
    • Nthcdr

    Std/lists/nthcdr

    Lemmas about nthcdr available in the std/lists library.

    Definitions and Theorems

    Theorem: nthcdr-when-zp

    (defthm nthcdr-when-zp
            (implies (zp n) (equal (nthcdr n x) x)))

    Theorem: nthcdr-when-atom

    (defthm nthcdr-when-atom
            (implies (atom x)
                     (equal (nthcdr n x) (if (zp n) x nil))))

    Theorem: nthcdr-of-cons

    (defthm nthcdr-of-cons
            (equal (nthcdr n (cons a x))
                   (if (zp n)
                       (cons a x)
                       (nthcdr (- n 1) x))))

    Theorem: true-listp-of-nthcdr

    (defthm true-listp-of-nthcdr
            (equal (true-listp (nthcdr n x))
                   (or (true-listp x)
                       (< (len x) (nfix n))))
            :rule-classes ((:rewrite)))

    Theorem: len-of-nthcdr

    (defthm len-of-nthcdr
            (equal (len (nthcdr n l))
                   (nfix (- (len l) (nfix n)))))

    Theorem: consp-of-nthcdr

    (defthm consp-of-nthcdr
            (equal (consp (nthcdr n x))
                   (< (nfix n) (len x))))

    Theorem: open-small-nthcdr

    (defthm open-small-nthcdr
            (implies (syntaxp (and (quotep n)
                                   (natp (unquote n))
                                   (< (unquote n) 5)))
                     (equal (nthcdr n x)
                            (if (zp n)
                                x (nthcdr (+ -1 n) (cdr x))))))

    Theorem: acl2-count-of-nthcdr-rewrite

    (defthm acl2-count-of-nthcdr-rewrite
            (equal (< (acl2-count (nthcdr n x))
                      (acl2-count x))
                   (if (zp n)
                       nil
                       (or (consp x) (< 0 (acl2-count x))))))

    Theorem: acl2-count-of-nthcdr-linear

    (defthm acl2-count-of-nthcdr-linear
            (implies (and (not (zp n)) (consp x))
                     (< (acl2-count (nthcdr n x))
                        (acl2-count x)))
            :rule-classes :linear)

    Theorem: acl2-count-of-nthcdr-linear-weak

    (defthm acl2-count-of-nthcdr-linear-weak
            (<= (acl2-count (nthcdr n x))
                (acl2-count x))
            :rule-classes :linear)

    Theorem: car-of-nthcdr

    (defthm car-of-nthcdr
            (equal (car (nthcdr i x)) (nth i x)))

    Theorem: nthcdr-of-cdr

    (defthm nthcdr-of-cdr
            (equal (nthcdr i (cdr x))
                   (cdr (nthcdr i x))))

    Theorem: nthcdr-when-less-than-len-under-iff

    (defthm nthcdr-when-less-than-len-under-iff
            (implies (< (nfix n) (len x))
                     (iff (nthcdr n x) t)))

    Theorem: nthcdr-of-nthcdr

    (defthm nthcdr-of-nthcdr
            (equal (nthcdr a (nthcdr b x))
                   (nthcdr (+ (nfix a) (nfix b)) x)))

    Theorem: append-of-take-and-nthcdr

    (defthm append-of-take-and-nthcdr
            (implies (<= (nfix n) (len x))
                     (equal (append (take n x) (nthcdr n x))
                            x)))

    Theorem: nthcdr-of-list-fix

    (defthm nthcdr-of-list-fix
            (equal (nthcdr n (list-fix x))
                   (list-fix (nthcdr n x))))

    Theorem: element-list-p-of-nthcdr

    (defthm element-list-p-of-nthcdr
            (implies (element-list-p (double-rewrite x))
                     (element-list-p (nthcdr n x)))
            :rule-classes :rewrite)

    Theorem: nthcdr-of-elementlist-projection

    (defthm nthcdr-of-elementlist-projection
            (equal (nthcdr n (elementlist-projection x))
                   (elementlist-projection (nthcdr n x)))
            :rule-classes :rewrite)

    Theorem: subsetp-of-nthcdr

    (defthm subsetp-of-nthcdr
            (subsetp-equal (nthcdr n l) l))