• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/io
      • Std/osets
      • Std/system
      • Std/basic
      • Std/typed-lists
        • Std/typed-lists/character-listp
        • Std/typed-lists/symbol-listp
        • Std/typed-lists/boolean-listp
        • Std/typed-lists/string-listp
          • Std/typed-lists/eqlable-listp
          • Theorems-about-true-list-lists
          • Std/typed-lists/atom-listp
          • Unsigned-byte-listp
          • Cons-listp
          • Cons-list-listp
          • Signed-byte-listp
          • String-or-symbol-listp
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
        • Std-extensions
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Std/typed-lists
    • String-listp

    Std/typed-lists/string-listp

    Lemmas about string-listp available in the std/typed-lists library.

    Most of these are generated automatically with std::deflist.

    Definitions and Theorems

    Theorem: string-listp-of-cons

    (defthm string-listp-of-cons
      (equal (string-listp (cons a x))
             (and (stringp a) (string-listp x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-cdr-when-string-listp

    (defthm string-listp-of-cdr-when-string-listp
      (implies (string-listp (double-rewrite x))
               (string-listp (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-when-not-consp

    (defthm string-listp-when-not-consp
      (implies (not (consp x))
               (equal (string-listp x) (not x)))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-car-when-string-listp

    (defthm stringp-of-car-when-string-listp
      (implies (string-listp x)
               (iff (stringp (car x)) (consp x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-string-listp-compound-recognizer

    (defthm true-listp-when-string-listp-compound-recognizer
      (implies (string-listp x)
               (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: string-listp-of-list-fix

    (defthm string-listp-of-list-fix
      (implies (string-listp x)
               (string-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-sfix

    (defthm string-listp-of-sfix
      (iff (string-listp (set::sfix x))
           (or (string-listp x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-insert

    (defthm string-listp-of-insert
      (iff (string-listp (set::insert a x))
           (and (string-listp (set::sfix x))
                (stringp a)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-delete

    (defthm string-listp-of-delete
      (implies (string-listp x)
               (string-listp (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-mergesort

    (defthm string-listp-of-mergesort
      (iff (string-listp (set::mergesort x))
           (string-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-union

    (defthm string-listp-of-union
      (iff (string-listp (set::union x y))
           (and (string-listp (set::sfix x))
                (string-listp (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-intersect-1

    (defthm string-listp-of-intersect-1
      (implies (string-listp x)
               (string-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-intersect-2

    (defthm string-listp-of-intersect-2
      (implies (string-listp y)
               (string-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-difference

    (defthm string-listp-of-difference
      (implies (string-listp x)
               (string-listp (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-duplicated-members

    (defthm string-listp-of-duplicated-members
      (implies (string-listp x)
               (string-listp (duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-rev

    (defthm string-listp-of-rev
      (equal (string-listp (rev x))
             (string-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-append

    (defthm string-listp-of-append
      (equal (string-listp (append a b))
             (and (string-listp (list-fix a))
                  (string-listp b)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-rcons

    (defthm string-listp-of-rcons
      (iff (string-listp (rcons a x))
           (and (stringp a)
                (string-listp (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-when-member-equal-of-string-listp

    (defthm stringp-when-member-equal-of-string-listp
      (and (implies (and (member-equal a x)
                         (string-listp x))
                    (stringp a))
           (implies (and (string-listp x)
                         (member-equal a x))
                    (stringp a)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-when-subsetp-equal

    (defthm string-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (string-listp y))
                    (equal (string-listp x) (true-listp x)))
           (implies (and (string-listp y)
                         (subsetp-equal x y))
                    (equal (string-listp x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-set-difference-equal

    (defthm string-listp-of-set-difference-equal
      (implies (string-listp x)
               (string-listp (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-intersection-equal-1

    (defthm string-listp-of-intersection-equal-1
      (implies (string-listp (double-rewrite x))
               (string-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-intersection-equal-2

    (defthm string-listp-of-intersection-equal-2
      (implies (string-listp (double-rewrite y))
               (string-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-union-equal

    (defthm string-listp-of-union-equal
      (equal (string-listp (union-equal x y))
             (and (string-listp (list-fix x))
                  (string-listp (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-take

    (defthm string-listp-of-take
      (implies (string-listp (double-rewrite x))
               (iff (string-listp (take n x))
                    (or (stringp nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-repeat

    (defthm string-listp-of-repeat
      (iff (string-listp (repeat n x))
           (or (stringp x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-nth-when-string-listp

    (defthm stringp-of-nth-when-string-listp
      (implies (string-listp x)
               (iff (stringp (nth n x))
                    (< (nfix n) (len x))))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-update-nth

    (defthm string-listp-of-update-nth
      (implies (string-listp (double-rewrite x))
               (iff (string-listp (update-nth n y x))
                    (and (stringp y)
                         (or (<= (nfix n) (len x))
                             (stringp nil)))))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-butlast

    (defthm string-listp-of-butlast
      (implies (string-listp (double-rewrite x))
               (string-listp (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-nthcdr

    (defthm string-listp-of-nthcdr
      (implies (string-listp (double-rewrite x))
               (string-listp (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-last

    (defthm string-listp-of-last
      (implies (string-listp (double-rewrite x))
               (string-listp (last x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-remove

    (defthm string-listp-of-remove
      (implies (string-listp x)
               (string-listp (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: string-listp-of-revappend

    (defthm string-listp-of-revappend
      (equal (string-listp (revappend x y))
             (and (string-listp (list-fix x))
                  (string-listp y)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-string-listp-rewrite

    (defthm true-listp-when-string-listp-rewrite
      (implies (string-listp x)
               (true-listp x))
      :rule-classes ((:rewrite :backchain-limit-lst 1)))

    Theorem: string-listp-of-remove-equal

    (defthm string-listp-of-remove-equal
      (implies (string-listp x)
               (string-listp (remove-equal a x))))

    Theorem: string-listp-of-remove-duplicates-equal

    (defthm string-listp-of-remove-duplicates-equal
      (equal (string-listp (remove-duplicates-equal x))
             (string-listp (true-list-fix x))))