• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
      • B*
      • Defunc
      • Fty
        • Deftagsum
        • Defprod
        • Defflexsum
        • Defbitstruct
        • Deflist
        • Defalist
        • Defbyte
        • Defresult
        • Deffixtype
        • Deffixequiv
        • Fty-discipline
        • Defoption
        • Fty-extensions
        • Defsubtype
        • Deftypes
        • Defflatsum
        • Deflist-of-len
        • Defbytelist
        • Defset
        • Fty::basetypes
        • Specific-types
        • Defvisitors
        • Deffixtype-alias
        • Defomap
        • Deffixequiv-sk
        • Defunit
        • Deffixequiv-mutual
        • Fty::baselists
          • Symbol-list
            • Symbol-list-fix
            • Symbol-list-equiv
            • True-list-list
            • Nat-list
            • Rational-list
            • Integer-list
            • Boolean-list
            • ACL2-number-list
          • Defmap
        • Std/util
        • Apt
        • Defdata
        • Defrstobj
        • Seq
        • Match-tree
        • Defrstobj
        • With-supporters
        • Def-partial-measure
        • Template-subst
        • Soft
        • Defthm-domain
        • Event-macros
        • Def-universal-equiv
        • Def-saved-obligs
        • With-supporters-after
        • Definec
        • Sig
        • Outer-local
        • Data-structures
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Symbol-list

    Symbol-list-equiv

    Basic equivalence relation for symbol-list structures.

    Definitions and Theorems

    Function: symbol-list-equiv$inline

    (defun symbol-list-equiv$inline (x y)
           (declare (xargs :guard (and (symbol-listp x)
                                       (symbol-listp y))))
           (equal (symbol-list-fix x)
                  (symbol-list-fix y)))

    Theorem: symbol-list-equiv-is-an-equivalence

    (defthm symbol-list-equiv-is-an-equivalence
            (and (booleanp (symbol-list-equiv x y))
                 (symbol-list-equiv x x)
                 (implies (symbol-list-equiv x y)
                          (symbol-list-equiv y x))
                 (implies (and (symbol-list-equiv x y)
                               (symbol-list-equiv y z))
                          (symbol-list-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: symbol-list-equiv-implies-equal-symbol-list-fix-1

    (defthm symbol-list-equiv-implies-equal-symbol-list-fix-1
            (implies (symbol-list-equiv x x-equiv)
                     (equal (symbol-list-fix x)
                            (symbol-list-fix x-equiv)))
            :rule-classes (:congruence))

    Theorem: symbol-list-fix-under-symbol-list-equiv

    (defthm symbol-list-fix-under-symbol-list-equiv
            (symbol-list-equiv (symbol-list-fix x)
                               x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-symbol-list-fix-1-forward-to-symbol-list-equiv

    (defthm equal-of-symbol-list-fix-1-forward-to-symbol-list-equiv
            (implies (equal (symbol-list-fix x) y)
                     (symbol-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-symbol-list-fix-2-forward-to-symbol-list-equiv

    (defthm equal-of-symbol-list-fix-2-forward-to-symbol-list-equiv
            (implies (equal x (symbol-list-fix y))
                     (symbol-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: symbol-list-equiv-of-symbol-list-fix-1-forward

    (defthm symbol-list-equiv-of-symbol-list-fix-1-forward
            (implies (symbol-list-equiv (symbol-list-fix x)
                                        y)
                     (symbol-list-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: symbol-list-equiv-of-symbol-list-fix-2-forward

    (defthm symbol-list-equiv-of-symbol-list-fix-2-forward
            (implies (symbol-list-equiv x (symbol-list-fix y))
                     (symbol-list-equiv x y))
            :rule-classes :forward-chaining)