• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
            • Aignet-outputs-aux
            • Aignet-nxsts-aux
            • Fanin
            • Aignet-outputs
            • Lookup-reg->nxst
            • Aignet-lit-fix
            • Stype-count
            • Aignet-fanins
            • Aignet-nxsts
            • Aignet-idp
            • Aignet-norm
            • Aignet-norm-p
              • Aignet-id-fix
              • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Stypep
            • Typecode
          • Aignet-copy-init
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-with-tracking
          • Aignet-complete-copy
          • Aignet-eval
          • Semantics
          • Aignet-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Network

    Aignet-norm-p

    Signature
    (aignet-norm-p x) → *

    Definitions and Theorems

    Function: aignet-norm-p

    (defun aignet-norm-p (x)
           (declare (xargs :guard t))
           (let ((__function__ 'aignet-norm-p))
                (declare (ignorable __function__))
                (equal (ec-call (aignet-norm x)) x)))

    Theorem: aignet-norm-p-of-aignet-norm

    (defthm aignet-norm-p-of-aignet-norm
            (aignet-norm-p (aignet-norm x)))

    Theorem: aignet-norm-when-aignet-norm-p

    (defthm aignet-norm-when-aignet-norm-p
            (implies (aignet-norm-p x)
                     (equal (aignet-norm x) x)))

    Function: aignet-equiv$inline

    (defun aignet-equiv$inline (x acl2::y)
           (declare (xargs :guard (and (aignet-norm-p x)
                                       (aignet-norm-p acl2::y))))
           (equal (aignet-norm x)
                  (aignet-norm acl2::y)))

    Theorem: aignet-equiv-is-an-equivalence

    (defthm aignet-equiv-is-an-equivalence
            (and (booleanp (aignet-equiv x y))
                 (aignet-equiv x x)
                 (implies (aignet-equiv x y)
                          (aignet-equiv y x))
                 (implies (and (aignet-equiv x y)
                               (aignet-equiv y z))
                          (aignet-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: aignet-equiv-implies-equal-aignet-norm-1

    (defthm aignet-equiv-implies-equal-aignet-norm-1
            (implies (aignet-equiv x x-equiv)
                     (equal (aignet-norm x)
                            (aignet-norm x-equiv)))
            :rule-classes (:congruence))

    Theorem: aignet-norm-under-aignet-equiv

    (defthm aignet-norm-under-aignet-equiv
            (aignet-equiv (aignet-norm x) x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-aignet-norm-1-forward-to-aignet-equiv

    (defthm equal-of-aignet-norm-1-forward-to-aignet-equiv
            (implies (equal (aignet-norm x) acl2::y)
                     (aignet-equiv x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-aignet-norm-2-forward-to-aignet-equiv

    (defthm equal-of-aignet-norm-2-forward-to-aignet-equiv
            (implies (equal x (aignet-norm acl2::y))
                     (aignet-equiv x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: aignet-equiv-of-aignet-norm-1-forward

    (defthm aignet-equiv-of-aignet-norm-1-forward
            (implies (aignet-equiv (aignet-norm x) acl2::y)
                     (aignet-equiv x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: aignet-equiv-of-aignet-norm-2-forward

    (defthm aignet-equiv-of-aignet-norm-2-forward
            (implies (aignet-equiv x (aignet-norm acl2::y))
                     (aignet-equiv x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: node-list-equiv-refines-aignet-equiv

    (defthm node-list-equiv-refines-aignet-equiv
            (implies (node-list-equiv x y)
                     (aignet-equiv x y))
            :rule-classes (:refinement))