• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
            • Aignet-outputs-aux
            • Aignet-nxsts-aux
            • Fanin
            • Aignet-outputs
              • Lookup-reg->nxst
              • Aignet-lit-fix
              • Stype-count
              • Aignet-fanins
              • Aignet-nxsts
              • Aignet-idp
              • Aignet-norm
              • Aignet-norm-p
              • Aignet-id-fix
              • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Stypep
            • Typecode
          • Aignet-copy-init
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-with-tracking
          • Aignet-complete-copy
          • Aignet-eval
          • Semantics
          • Aignet-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Network

    Aignet-outputs

    Signature
    (aignet-outputs aignet) → outputs
    Arguments
    aignet — Guard (node-listp aignet).
    Returns
    outputs — Type (node-listp outputs).

    Definitions and Theorems

    Function: aignet-outputs

    (defun aignet-outputs (aignet)
           (declare (xargs :guard (node-listp aignet)))
           (let ((__function__ 'aignet-outputs))
                (declare (ignorable __function__))
                (aignet-outputs-aux (stype-count :po aignet)
                                    aignet)))

    Theorem: node-listp-of-aignet-outputs

    (defthm node-listp-of-aignet-outputs
            (b* ((outputs (aignet-outputs aignet)))
                (node-listp outputs))
            :rule-classes :rewrite)

    Theorem: fanin-count-of-aignet-outputs

    (defthm fanin-count-of-aignet-outputs
            (b* ((?outputs (aignet-outputs aignet)))
                (equal (fanin-count outputs) 0)))

    Theorem: lookup-id-of-aignet-outputs

    (defthm lookup-id-of-aignet-outputs
            (b* ((?outputs (aignet-outputs aignet)))
                (equal (lookup-id k outputs) nil)))

    Theorem: stype-count-of-aignet-outputs

    (defthm stype-count-of-aignet-outputs
            (b* ((?outputs (aignet-outputs aignet)))
                (equal (stype-count stype outputs)
                       (if (equal (stype-fix stype) :po)
                           (stype-count :po aignet)
                           0))))

    Theorem: aignet-outputs-of-node-list-fix-aignet

    (defthm aignet-outputs-of-node-list-fix-aignet
            (equal (aignet-outputs (node-list-fix aignet))
                   (aignet-outputs aignet)))

    Theorem: aignet-outputs-node-list-equiv-congruence-on-aignet

    (defthm aignet-outputs-node-list-equiv-congruence-on-aignet
            (implies (node-list-equiv aignet aignet-equiv)
                     (equal (aignet-outputs aignet)
                            (aignet-outputs aignet-equiv)))
            :rule-classes :congruence)

    Theorem: lookup-stype-of-aignet-outputs

    (defthm lookup-stype-of-aignet-outputs
            (b* ((?outputs (aignet-outputs aignet)))
                (equal (lookup-stype k stype outputs)
                       (if (and (equal (stype-fix stype) :po)
                                (< (nfix k) (stype-count :po aignet)))
                           (aignet-outputs (lookup-stype k :po aignet))
                           nil))))

    Theorem: lookup-reg->nxst-of-append-aignet-outputs

    (defthm lookup-reg->nxst-of-append-aignet-outputs
            (b* ((?outputs (aignet-outputs aignet)))
                (equal (lookup-reg->nxst k (append outputs rest))
                       (lookup-reg->nxst k rest))))

    Theorem: car-of-aignet-outputs

    (defthm
     car-of-aignet-outputs
     (b*
      ((?outputs (aignet-outputs aignet)))
      (implies
        (posp (stype-count :po aignet))
        (equal
             (car outputs)
             (po-node (fanin 0
                             (lookup-stype (1- (stype-count :po aignet))
                                           :po aignet)))))))

    Theorem: consp-of-aignet-outputs

    (defthm consp-of-aignet-outputs
            (b* ((?outputs (aignet-outputs aignet)))
                (equal (consp outputs)
                       (posp (stype-count :po aignet)))))

    Theorem: aignet-outputs-of-append-aignet-outputs

    (defthm
     aignet-outputs-of-append-aignet-outputs
     (b*
       nil
       (implies (and (equal (stype-count :po rest) 0)
                     (<= (fanin-count x) (fanin-count rest)))
                (equal (aignet-outputs (append (aignet-outputs x) rest))
                       (aignet-outputs x)))))

    Theorem: aignet-outputs-of-append-non-outputs

    (defthm aignet-outputs-of-append-non-outputs
            (implies (equal (stype-count :po first) 0)
                     (equal (aignet-outputs (append first x))
                            (aignet-outputs x))))

    Theorem: aignet-outputs-of-cons

    (defthm
         aignet-outputs-of-cons
         (equal (aignet-outputs (cons node x))
                (if (equal (stype node) :po)
                    (cons (po-node (aignet-lit-fix (po-node->fanin node)
                                                   x))
                          (aignet-outputs x))
                    (aignet-outputs x))))