• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-with-tracking
        • Aignet-complete-copy
        • Aignet-eval
        • Semantics
        • Aignet-transforms
          • Aignet-comb-transforms
            • Fraig
            • Observability-fix
            • Constprop
            • Balance
            • Apply-m-assumption-n-output-output-transform-default
            • Obs-constprop
            • Apply-n-output-comb-transform-default
            • Rewrite
            • Comb-transform
            • Abc-comb-simplify
            • Prune
            • Apply-comb-transform-default
            • Rewrite!
            • M-assumption-n-output-comb-transform->name
            • N-output-comb-transform->name
            • Comb-transform->name
            • N-output-comb-transformlist
            • M-assumption-n-output-comb-transformlist
            • Comb-transformlist
            • Apply-comb-transform
              • Apply-comb-transforms
                • Apply-comb-transform!
                • Apply-comb-transforms!
            • Aignet-m-assumption-n-output-transforms
            • Aignet-n-output-comb-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Debugging
      • Projects
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Apply-comb-transform

    Apply-comb-transforms

    Signature
    (apply-comb-transforms aignet aignet2 transforms state) 
      → 
    (mv new-aignet2 new-state)

    Definitions and Theorems

    Function: apply-comb-transforms

    (defun
     apply-comb-transforms
     (aignet aignet2 transforms state)
     (declare (xargs :stobjs (aignet aignet2 state)))
     (declare (xargs :guard t))
     (let
      ((__function__ 'apply-comb-transforms))
      (declare (ignorable __function__))
      (prog2$
       (print-aignet-stats "Input" aignet)
       (time$
        (b*
         (((unless (consp transforms))
           (b* ((aignet2 (aignet-raw-copy aignet aignet2)))
               (mv aignet2 state))))
         (mbe
             :logic
             (non-exec
                  (apply-comb-transforms!-core aignet transforms state))
             :exec
             (b* (((mv aignet2 state)
                   (apply-comb-transform aignet aignet2 (car transforms)
                                         state))
                  ((local-stobjs aignet3)
                   (mv aignet2 aignet3 state)))
                 (apply-comb-transforms-in-place
                      aignet2 aignet3 (cdr transforms)
                      state))))
        :msg "All transforms: ~st seconds, ~sa bytes.~%"))))

    Theorem: normalize-inputs-of-apply-comb-transforms

    (defthm
     normalize-inputs-of-apply-comb-transforms
     (b*
      nil
      (implies
       (syntaxp (not (equal aignet2 ''nil)))
       (equal
        (apply-comb-transforms aignet aignet2 transforms state)
        (let
            ((aignet2 nil))
            (apply-comb-transforms aignet aignet2 transforms state))))))

    Theorem: num-ins-of-apply-comb-transforms

    (defthm
         num-ins-of-apply-comb-transforms
         (b* (((mv ?new-aignet2 ?new-state)
               (apply-comb-transforms aignet aignet2 transforms state)))
             (equal (stype-count :pi new-aignet2)
                    (stype-count :pi aignet))))

    Theorem: num-regs-of-apply-comb-transforms

    (defthm
         num-regs-of-apply-comb-transforms
         (b* (((mv ?new-aignet2 ?new-state)
               (apply-comb-transforms aignet aignet2 transforms state)))
             (equal (stype-count :reg new-aignet2)
                    (stype-count :reg aignet))))

    Theorem: num-outs-of-apply-comb-transforms

    (defthm
         num-outs-of-apply-comb-transforms
         (b* (((mv ?new-aignet2 ?new-state)
               (apply-comb-transforms aignet aignet2 transforms state)))
             (equal (stype-count :po new-aignet2)
                    (stype-count :po aignet))))

    Theorem: apply-comb-transforms-correct

    (defthm
         apply-comb-transforms-correct
         (b* (((mv ?new-aignet2 ?new-state)
               (apply-comb-transforms aignet aignet2 transforms state)))
             (comb-equiv new-aignet2 aignet)))

    Theorem: w-state-of-apply-comb-transforms

    (defthm
         w-state-of-apply-comb-transforms
         (b* (((mv ?new-aignet2 ?new-state)
               (apply-comb-transforms aignet aignet2 transforms state)))
             (equal (w new-state) (w state))))

    Theorem: list-of-outputs-of-apply-comb-transforms

    (defthm
     list-of-outputs-of-apply-comb-transforms
     (b*
       (((mv ?new-aignet2 ?new-state)
         (apply-comb-transforms aignet aignet2 transforms state)))
       (equal (list new-aignet2 new-state)
              (apply-comb-transforms aignet aignet2 transforms state))))