• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-with-tracking
        • Aignet-complete-copy
        • Aignet-eval
        • Semantics
        • Aignet-transforms
          • Aignet-comb-transforms
            • Fraig
            • Observability-fix
            • Constprop
            • Balance
            • Apply-m-assumption-n-output-output-transform-default
              • Obs-constprop
              • Apply-n-output-comb-transform-default
              • Rewrite
              • Comb-transform
              • Abc-comb-simplify
              • Apply-comb-transform-default
              • Prune
              • Rewrite!
              • M-assumption-n-output-comb-transform->name
              • N-output-comb-transform->name
              • Comb-transform->name
              • N-output-comb-transformlist
              • M-assumption-n-output-comb-transformlist
              • Comb-transformlist
              • Apply-comb-transform
            • Aignet-m-assumption-n-output-transforms
            • Aignet-n-output-comb-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Debugging
      • Projects
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Aignet-comb-transforms

    Apply-m-assumption-n-output-output-transform-default

    Signature
    (apply-m-assumption-n-output-output-transform-default 
         m n aignet aignet2 transform state) 
     
      → 
    (mv new-aignet2 new-state)
    Arguments
    m — Guard (natp m).
    n — Guard (natp n).

    Definitions and Theorems

    Function: apply-m-assumption-n-output-output-transform-default

    (defun apply-m-assumption-n-output-output-transform-default
           (m n aignet aignet2 transform state)
     (declare (xargs :stobjs (aignet aignet2 state)))
     (declare (xargs :guard (and (natp m) (natp n))))
     (declare (xargs :guard (<= (+ m n) (num-outs aignet))))
     (let ((__function__
                'apply-m-assumption-n-output-output-transform-default))
      (declare (ignorable __function__))
      (b*
       (((unless (m-assumption-n-output-comb-transform-p transform))
         (raise "Bad transform config object; should satisfy ~x1: ~x0~%"
                transform
                'm-assumption-n-output-comb-transform-p)
         (b* ((aignet2 (aignet-raw-copy aignet aignet2)))
           (mv aignet2 state)))
        (name (m-assumption-n-output-comb-transform->name transform)))
       (time$
        (b*
         (((mv aignet2 state)
           (case (tag transform)
            (:balance-config
                 (b* ((aignet2 (balance aignet aignet2 transform)))
                   (mv aignet2 state)))
            (:fraig-config (fraig aignet aignet2 transform state))
            (:rewrite-config
                 (b* ((aignet2 (rewrite aignet aignet2 transform)))
                   (mv aignet2 state)))
            (:obs-constprop-config
                 (obs-constprop aignet aignet2 transform state))
            (:observability-config
                 (observability-fix aignet aignet2 transform state))
            (:constprop-config
                 (b* ((aignet2 (constprop aignet aignet2 transform)))
                   (mv aignet2 state)))
            (:snapshot-config
                 (b* ((state (aignet-write-aiger
                                  (snapshot-config->filename transform)
                                  aignet state))
                      (aignet2 (aignet-raw-copy aignet aignet2)))
                   (mv aignet2 state)))
            (:prune-config
                 (b* ((aignet2 (prune aignet aignet2 transform)))
                   (mv aignet2 state)))
            (:unreachability-config
               (b* ((aignet2 (unreachability aignet aignet2 transform)))
                 (mv aignet2 state)))
            (:dom-supergates-sweep-config
             (b* ((aignet2
                       (dom-supergates-sweep aignet aignet2 transform)))
               (mv aignet2 state)))
            (:n-outputs-unreachability-config
             (b*
              ((aignet2
                   (n-outputs-unreachability (+ (lnfix m) (lnfix n))
                                             aignet aignet2 transform)))
              (mv aignet2 state)))
            (:n-outputs-dom-supergates-sweep-config
                 (b* ((aignet2 (n-outputs-dom-supergates-sweep
                                    (+ (lnfix m) (lnfix n))
                                    aignet aignet2 transform)))
                   (mv aignet2 state)))
            (:m-assum-n-output-observability-config
                 (m-assum-n-output-observability
                      m n aignet aignet2 transform state))
            (otherwise
                 (abc-comb-simplify aignet aignet2 transform state))))
          (- (print-aignet-stats name aignet2)))
         (mv aignet2 state))
        :msg "~s0 transform: ~st seconds, ~sa bytes.~%"
        :args (list name)))))

    Theorem: normalize-inputs-of-apply-m-assumption-n-output-output-transform-default

    (defthm
     normalize-inputs-of-apply-m-assumption-n-output-output-transform-default
     (b* nil
       (implies (syntaxp (not (equal aignet2 ''nil)))
                (equal (apply-m-assumption-n-output-output-transform-default
                            m n aignet aignet2 transform state)
                       (let ((aignet2 nil))
                         (apply-m-assumption-n-output-output-transform-default
                              m n aignet aignet2 transform state))))))

    Theorem: num-ins-of-apply-m-assumption-n-output-output-transform-default

    (defthm
        num-ins-of-apply-m-assumption-n-output-output-transform-default
      (b* (((mv ?new-aignet2 ?new-state)
            (apply-m-assumption-n-output-output-transform-default
                 m n aignet aignet2 transform state)))
        (equal (stype-count :pi new-aignet2)
               (stype-count :pi aignet))))

    Theorem: num-regs-of-apply-m-assumption-n-output-output-transform-default

    (defthm
       num-regs-of-apply-m-assumption-n-output-output-transform-default
      (b* (((mv ?new-aignet2 ?new-state)
            (apply-m-assumption-n-output-output-transform-default
                 m n aignet aignet2 transform state)))
        (equal (stype-count :reg new-aignet2)
               (stype-count :reg aignet))))

    Theorem: num-outs-of-apply-m-assumption-n-output-output-transform-default

    (defthm
       num-outs-of-apply-m-assumption-n-output-output-transform-default
      (b* (((mv ?new-aignet2 ?new-state)
            (apply-m-assumption-n-output-output-transform-default
                 m n aignet aignet2 transform state)))
        (equal (stype-count :po new-aignet2)
               (stype-count :po aignet))))

    Theorem: apply-m-assumption-n-output-output-transform-default-eval-assumptions

    (defthm
     apply-m-assumption-n-output-output-transform-default-eval-assumptions
     (b* (((mv ?new-aignet2 ?new-state)
           (apply-m-assumption-n-output-output-transform-default
                m n aignet aignet2 transform state)))
       (implies (< (nfix i) (nfix m))
                (equal (output-eval i invals regvals new-aignet2)
                       (output-eval i invals regvals aignet)))))

    Theorem: apply-m-assumption-n-output-output-transform-default-eval-conclusion

    (defthm
     apply-m-assumption-n-output-output-transform-default-eval-conclusion
     (b* (((mv ?new-aignet2 ?new-state)
           (apply-m-assumption-n-output-output-transform-default
                m n aignet aignet2 transform state)))
       (implies
            (and (< (nfix i) (+ (nfix m) (nfix n)))
                 (equal (conjoin-output-range 0 m invals regvals aignet)
                        1))
            (equal (output-eval i invals regvals new-aignet2)
                   (output-eval i invals regvals aignet)))))

    Theorem: w-state-of-apply-m-assumption-n-output-output-transform-default

    (defthm
        w-state-of-apply-m-assumption-n-output-output-transform-default
      (b* (((mv ?new-aignet2 ?new-state)
            (apply-m-assumption-n-output-output-transform-default
                 m n aignet aignet2 transform state)))
        (equal (w new-state) (w state))))

    Theorem: list-of-outputs-of-apply-m-assumption-n-output-output-transform-default

    (defthm
     list-of-outputs-of-apply-m-assumption-n-output-output-transform-default
     (b* (((mv ?new-aignet2 ?new-state)
           (apply-m-assumption-n-output-output-transform-default
                m n aignet aignet2 transform state)))
       (equal (list new-aignet2 new-state)
              (apply-m-assumption-n-output-output-transform-default
                   m n aignet aignet2 transform state))))