• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-with-tracking
        • Aignet-complete-copy
        • Aignet-eval
        • Semantics
        • Aignet-transforms
          • Aignet-comb-transforms
          • Aignet-m-assumption-n-output-transforms
            • M-assumption-n-output-comb-transform
            • Apply-m-assumption-n-output-transform
              • Apply-m-assumption-n-output-transforms
                • Apply-m-assumption-n-output-transform!
                • Apply-m-assumption-n-output-transforms!
            • Aignet-n-output-comb-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Apply-m-assumption-n-output-transform

    Apply-m-assumption-n-output-transforms

    Signature
    (apply-m-assumption-n-output-transforms 
         m n aignet aignet2 transforms state) 
     
      → 
    (mv new-aignet2 new-state)
    Arguments
    m — Guard (natp m).
    n — Guard (natp n).

    Definitions and Theorems

    Function: apply-m-assumption-n-output-transforms

    (defun
     apply-m-assumption-n-output-transforms
     (m n aignet aignet2 transforms state)
     (declare (xargs :stobjs (aignet aignet2 state)))
     (declare (xargs :guard (and (natp m) (natp n))))
     (declare (xargs :guard (<= (+ m n) (num-outs aignet))))
     (let
      ((__function__ 'apply-m-assumption-n-output-transforms))
      (declare (ignorable __function__))
      (prog2$
       (print-aignet-stats "Input" aignet)
       (time$
           (b* (((unless (consp transforms))
                 (b* ((aignet2 (aignet-raw-copy aignet aignet2)))
                     (mv aignet2 state))))
               (mbe :logic (non-exec (apply-m-assumption-n-output-transforms!-core
                                          m n aignet transforms state))
                    :exec (b* (((mv aignet2 state)
                                (apply-m-assumption-n-output-transform
                                     m n aignet aignet2 (car transforms)
                                     state))
                               ((local-stobjs aignet3)
                                (mv aignet2 aignet3 state)))
                              (apply-m-assumption-n-output-transforms-in-place
                                   m n aignet2 aignet3 (cdr transforms)
                                   state))))
           :msg "All transforms: ~st seconds, ~sa bytes.~%"))))

    Theorem: normalize-inputs-of-apply-m-assumption-n-output-transforms

    (defthm
     normalize-inputs-of-apply-m-assumption-n-output-transforms
     (b*
       nil
       (implies (syntaxp (not (equal aignet2 ''nil)))
                (equal (apply-m-assumption-n-output-transforms
                            m n aignet aignet2 transforms state)
                       (let ((aignet2 nil))
                            (apply-m-assumption-n-output-transforms
                                 m
                                 n aignet aignet2 transforms state))))))

    Theorem: num-ins-of-apply-m-assumption-n-output-transforms

    (defthm num-ins-of-apply-m-assumption-n-output-transforms
            (b* (((mv ?new-aignet2 ?new-state)
                  (apply-m-assumption-n-output-transforms
                       m n aignet aignet2 transforms state)))
                (equal (stype-count :pi new-aignet2)
                       (stype-count :pi aignet))))

    Theorem: num-regs-of-apply-m-assumption-n-output-transforms

    (defthm num-regs-of-apply-m-assumption-n-output-transforms
            (b* (((mv ?new-aignet2 ?new-state)
                  (apply-m-assumption-n-output-transforms
                       m n aignet aignet2 transforms state)))
                (equal (stype-count :reg new-aignet2)
                       (stype-count :reg aignet))))

    Theorem: num-outs-of-apply-m-assumption-n-output-transforms

    (defthm num-outs-of-apply-m-assumption-n-output-transforms
            (b* (((mv ?new-aignet2 ?new-state)
                  (apply-m-assumption-n-output-transforms
                       m n aignet aignet2 transforms state)))
                (equal (stype-count :po new-aignet2)
                       (stype-count :po aignet))))

    Theorem: apply-m-assumption-n-output-transforms-correct

    (defthm
     apply-m-assumption-n-output-transforms-correct
     (b*
      (((mv ?new-aignet2 ?new-state)
        (apply-m-assumption-n-output-transforms
             m n aignet aignet2 transforms state)))
      (and
       (implies (< (nfix i) (nfix m))
                (equal (output-eval i invals regvals new-aignet2)
                       (output-eval i invals regvals aignet)))
       (implies
            (and (< (nfix i) (+ (nfix m) (nfix n)))
                 (equal (conjoin-output-range 0 m invals regvals aignet)
                        1))
            (equal (output-eval i invals regvals new-aignet2)
                   (output-eval i invals regvals aignet))))))

    Theorem: w-state-of-apply-m-assumption-n-output-transforms

    (defthm w-state-of-apply-m-assumption-n-output-transforms
            (b* (((mv ?new-aignet2 ?new-state)
                  (apply-m-assumption-n-output-transforms
                       m n aignet aignet2 transforms state)))
                (equal (w new-state) (w state))))

    Theorem: list-of-outputs-of-apply-m-assumption-n-output-transforms

    (defthm list-of-outputs-of-apply-m-assumption-n-output-transforms
            (b* (((mv ?new-aignet2 ?new-state)
                  (apply-m-assumption-n-output-transforms
                       m n aignet aignet2 transforms state)))
                (equal (list new-aignet2 new-state)
                       (apply-m-assumption-n-output-transforms
                            m n aignet aignet2 transforms state))))