• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
            • Node-fix
            • Node-p
            • Node-equiv
            • Gate-node->fanin1
            • Gate-node->fanin0
            • Co-node->fanin
              • Stype
              • Nxst-node
              • Node->type
              • Node->regp
              • Xor-node
              • And-node
              • Po-node
              • Proper-node-p
              • Reg-node
              • Pi-node
              • Const-node
            • Network
            • Combinational-type
            • Stypep
            • Typecode
          • Aignet-copy-init
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-with-tracking
          • Aignet-complete-copy
          • Aignet-eval
          • Semantics
          • Aignet-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Node

    Co-node->fanin

    Access the fanin literal from a combinational output node, i.e., from a primary output or a next-state (register input) node.

    Signature
    (co-node->fanin node) → lit
    Arguments
    node — Guard (node-p node).
    Returns
    lit — Type (litp lit).

    Definitions and Theorems

    Function: co-node->fanin

    (defun co-node->fanin (node)
           (declare (xargs :guard (node-p node)))
           (declare (xargs :guard (equal (node->type node) (out-type))))
           (let ((__function__ 'co-node->fanin))
                (declare (ignorable __function__))
                (lit-fix (if (equal (node->regp node) 1)
                             (nxst-node->fanin node)
                             (po-node->fanin node)))))

    Theorem: litp-of-co-node->fanin

    (defthm litp-of-co-node->fanin
            (b* ((lit (co-node->fanin node)))
                (litp lit))
            :rule-classes :type-prescription)

    Theorem: co-node->fanin-of-po-node

    (defthm co-node->fanin-of-po-node
            (equal (co-node->fanin (po-node f))
                   (lit-fix f)))

    Theorem: co-node->fanin-of-nxst-node

    (defthm co-node->fanin-of-nxst-node
            (equal (co-node->fanin (nxst-node f n))
                   (lit-fix f)))

    Theorem: co-node->fanin-of-node-fix-node

    (defthm co-node->fanin-of-node-fix-node
            (equal (co-node->fanin (node-fix node))
                   (co-node->fanin node)))

    Theorem: co-node->fanin-node-equiv-congruence-on-node

    (defthm co-node->fanin-node-equiv-congruence-on-node
            (implies (node-equiv node node-equiv)
                     (equal (co-node->fanin node)
                            (co-node->fanin node-equiv)))
            :rule-classes :congruence)