• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
          • Combinational-type
            • Ctype
            • Ctype-equiv
              • Ctype-fix
              • Ctypep
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-with-tracking
          • Aignet-complete-copy
          • Aignet-eval
          • Semantics
          • Aignet-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Debugging
      • Projects
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Combinational-type

    Ctype-equiv

    Equivalence relation for combinational-type keywords.

    Signature
    (ctype-equiv x y) → bool

    Definitions and Theorems

    Function: ctype-equiv

    (defun ctype-equiv (x y)
      (declare (xargs :guard t))
      (let ((__function__ 'ctype-equiv))
        (declare (ignorable __function__))
        (equal (ctype-fix x) (ctype-fix y))))

    Theorem: ctype-equiv-is-an-equivalence

    (defthm ctype-equiv-is-an-equivalence
      (and (booleanp (ctype-equiv x y))
           (ctype-equiv x x)
           (implies (ctype-equiv x y)
                    (ctype-equiv y x))
           (implies (and (ctype-equiv x y)
                         (ctype-equiv y z))
                    (ctype-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: ctype-equiv-implies-equal-ctype-fix-1

    (defthm ctype-equiv-implies-equal-ctype-fix-1
      (implies (ctype-equiv x x-equiv)
               (equal (ctype-fix x)
                      (ctype-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: ctype-fix-under-ctype-equiv

    (defthm ctype-fix-under-ctype-equiv
      (ctype-equiv (ctype-fix x) x))