• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
              • Lookup-stype
              • Aignet-extension-p
              • Aignet-nodes-ok
              • Aignet-outputs-aux
              • Aignet-nxsts-aux
              • Fanin
              • Aignet-outputs
              • Lookup-reg->nxst
              • Aignet-lit-fix
              • Stype-count
              • Aignet-fanins
              • Aignet-nxsts
              • Aignet-idp
              • Aignet-norm
              • Aignet-norm-p
              • Aignet-id-fix
              • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Stypep
            • Typecode
          • Aignet-copy-init
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-with-tracking
          • Aignet-complete-copy
          • Aignet-eval
          • Semantics
          • Aignet-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Network

    Lookup-id

    Core function for looking up an AIG node in the logical AIG network by its ID.

    Signature
    (lookup-id id aignet) → suffix
    Arguments
    id — Guard (natp id).
    aignet — Guard (node-listp aignet).
    Returns
    suffix — Tail of the aignet up to (and including) the idth node.
        Type (node-listp suffix).

    Definitions and Theorems

    Function: lookup-id

    (defun lookup-id (id aignet)
           (declare (xargs :guard (and (natp id) (node-listp aignet))))
           (let ((__function__ 'lookup-id))
                (declare (ignorable __function__))
                (cond ((endp aignet) (node-list-fix aignet))
                      ((and (fanin-node-p (car aignet))
                            (equal (fanin-count aignet) (lnfix id)))
                       (node-list-fix aignet))
                      (t (lookup-id id (cdr aignet))))))

    Theorem: node-listp-of-lookup-id

    (defthm node-listp-of-lookup-id
            (b* ((suffix (lookup-id id aignet)))
                (node-listp suffix))
            :rule-classes :rewrite)

    Theorem: lookup-id-of-nfix-id

    (defthm lookup-id-of-nfix-id
            (equal (lookup-id (nfix id) aignet)
                   (lookup-id id aignet)))

    Theorem: lookup-id-nat-equiv-congruence-on-id

    (defthm lookup-id-nat-equiv-congruence-on-id
            (implies (nat-equiv id id-equiv)
                     (equal (lookup-id id aignet)
                            (lookup-id id-equiv aignet)))
            :rule-classes :congruence)

    Theorem: lookup-id-of-node-list-fix-aignet

    (defthm lookup-id-of-node-list-fix-aignet
            (equal (lookup-id id (node-list-fix aignet))
                   (lookup-id id aignet)))

    Theorem: lookup-id-node-list-equiv-congruence-on-aignet

    (defthm lookup-id-node-list-equiv-congruence-on-aignet
            (implies (node-list-equiv aignet aignet-equiv)
                     (equal (lookup-id id aignet)
                            (lookup-id id aignet-equiv)))
            :rule-classes :congruence)

    Theorem: fanin-count-of-lookup-id

    (defthm fanin-count-of-lookup-id
            (implies (<= (nfix n) (fanin-count aignet))
                     (equal (fanin-count (lookup-id n aignet))
                            (nfix n))))

    Theorem: fanin-count-of-cdr-lookup-id

    (defthm fanin-count-of-cdr-lookup-id
            (implies (consp (lookup-id n aignet))
                     (equal (fanin-count (cdr (lookup-id n aignet)))
                            (+ -1 (nfix n)))))

    Theorem: output-ctype-of-lookup-id

    (defthm output-ctype-of-lookup-id
            (not (equal (ctype (stype (car (lookup-id id aignet))))
                        (out-ctype))))

    Theorem: output-stype-of-lookup-id

    (defthm output-stype-of-lookup-id
            (and (not (equal (stype (car (lookup-id id aignet)))
                             :po))
                 (not (equal (stype (car (lookup-id id aignet)))
                             :nxst))))

    Theorem: fanin-node-p-of-lookup-id

    (defthm fanin-node-p-of-lookup-id
            (fanin-node-p (car (lookup-id id aignet))))

    Theorem: lookup-id-0

    (defthm lookup-id-0
            (equal (lookup-id 0 aignet) nil))

    Theorem: lookup-id-in-bounds

    (defthm lookup-id-in-bounds
            (iff (consp (lookup-id n aignet))
                 (and (< 0 (nfix n))
                      (<= (nfix n) (fanin-count aignet)))))

    Theorem: lookup-id-in-bounds-when-positive

    (defthm lookup-id-in-bounds-when-positive
            (implies (posp n)
                     (iff (consp (lookup-id n aignet))
                          (<= (nfix n) (fanin-count aignet)))))

    Theorem: lookup-id-aignet-extension-p

    (defthm lookup-id-aignet-extension-p
            (aignet-extension-p aignet (lookup-id id aignet)))

    Theorem: lookup-id-in-extension

    (defthm lookup-id-in-extension
            (implies (and (aignet-extension-p new orig)
                          (<= (nfix id) (fanin-count orig)))
                     (equal (lookup-id id new)
                            (lookup-id id orig))))

    Theorem: lookup-id-in-extension-inverse

    (defthm lookup-id-in-extension-inverse
            (implies (and (aignet-extension-bind-inverse)
                          (<= (nfix id) (fanin-count orig)))
                     (equal (lookup-id id orig)
                            (lookup-id id new))))

    Theorem: fanin-count-of-cdr-lookup-bound-by-id

    (defthm fanin-count-of-cdr-lookup-bound-by-id
            (implies (consp (lookup-id id aignet))
                     (< (fanin-count (cdr (lookup-id id aignet)))
                        (nfix id)))
            :rule-classes :linear)

    Theorem: lookup-id-of-fanin-count-of-suffix

    (defthm lookup-id-of-fanin-count-of-suffix
            (implies (and (aignet-extension-p y x)
                          (consp x)
                          (fanin-node-p (car x)))
                     (equal (lookup-id (fanin-count x) y)
                            (node-list-fix x))))

    Theorem: true-listp-lookup-id-of-node-listp

    (defthm true-listp-lookup-id-of-node-listp
            (implies (node-listp aignet)
                     (true-listp (lookup-id id aignet)))
            :rule-classes :type-prescription)

    Theorem: lookup-id-of-nil

    (defthm lookup-id-of-nil
            (equal (lookup-id x nil) nil))

    Theorem: lookup-id-of-cons

    (defthm lookup-id-of-cons
            (equal (lookup-id id (cons node rest))
                   (if (and (fanin-node-p node)
                            (equal (nfix id)
                                   (+ 1 (fanin-count rest))))
                       (cons (node-fix node)
                             (node-list-fix rest))
                       (lookup-id id rest))))

    Theorem: lookup-id-of-fanin-count

    (defthm lookup-id-of-fanin-count
            (implies (fanin-node-p (car x))
                     (equal (lookup-id (fanin-count x) x)
                            (node-list-fix x))))

    Theorem: fanin-count-of-lookup-id-when-consp

    (defthm fanin-count-of-lookup-id-when-consp
            (implies (consp (lookup-id id aignet))
                     (equal (fanin-count (lookup-id id aignet))
                            id)))

    Theorem: posp-when-consp-of-lookup-id

    (defthm posp-when-consp-of-lookup-id
            (implies (consp (lookup-id id aignet))
                     (posp id))
            :rule-classes :forward-chaining)

    Theorem: lookup-id-consp-forward-to-id-bound-nfix

    (defthm lookup-id-consp-forward-to-id-bound-nfix
            (implies (and (consp (lookup-id id aignet)))
                     (<= (nfix id) (fanin-count aignet)))
            :rule-classes :forward-chaining)

    Theorem: lookup-id-consp-forward-to-id-bound

    (defthm lookup-id-consp-forward-to-id-bound
            (implies (and (consp (lookup-id id aignet))
                          (natp id))
                     (<= id (fanin-count aignet)))
            :rule-classes :forward-chaining)

    Theorem: lookup-id-out-of-bounds

    (defthm lookup-id-out-of-bounds
            (implies (< (fanin-count aignet) (nfix id))
                     (equal (lookup-id id aignet) nil)))