• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
              • Aignet-extension-p
              • Aignet-nodes-ok
              • Aignet-outputs-aux
              • Aignet-nxsts-aux
              • Fanin
              • Aignet-outputs
              • Lookup-reg->nxst
              • Aignet-lit-fix
              • Aignet-fanins
              • Stype-count
              • Aignet-nxsts
              • Aignet-idp
              • Aignet-norm
              • Aignet-norm-p
              • Aignet-id-fix
              • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-with-tracking
          • Aignet-complete-copy
          • Aignet-eval
          • Semantics
          • Aignet-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Debugging
      • Projects
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Network

    Lookup-stype

    Core function for looking up an input, output, or register in the logical AIG network by its IO number.

    Signature
    (lookup-stype n stype aignet) → suffix
    Arguments
    n — Guard (natp n).
    stype — Guard (stypep stype).
    aignet — Guard (node-listp aignet).
    Returns
    suffix — Type (node-listp suffix).

    See representation to understand IO numbers and IO lookups.

    Definitions and Theorems

    Function: lookup-stype

    (defun lookup-stype (n stype aignet)
      (declare (xargs :guard (and (natp n)
                                  (stypep stype)
                                  (node-listp aignet))))
      (let ((__function__ 'lookup-stype))
        (declare (ignorable __function__))
        (cond ((endp aignet) (node-list-fix aignet))
              ((and (equal (stype (car aignet))
                           (stype-fix stype))
                    (equal (stype-count stype (cdr aignet))
                           (lnfix n)))
               (node-list-fix aignet))
              (t (lookup-stype n stype (cdr aignet))))))

    Theorem: node-listp-of-lookup-stype

    (defthm node-listp-of-lookup-stype
      (b* ((suffix (lookup-stype n stype aignet)))
        (node-listp suffix))
      :rule-classes :rewrite)

    Theorem: lookup-stype-of-nfix-n

    (defthm lookup-stype-of-nfix-n
      (equal (lookup-stype (nfix n) stype aignet)
             (lookup-stype n stype aignet)))

    Theorem: lookup-stype-nat-equiv-congruence-on-n

    (defthm lookup-stype-nat-equiv-congruence-on-n
      (implies (nat-equiv n n-equiv)
               (equal (lookup-stype n stype aignet)
                      (lookup-stype n-equiv stype aignet)))
      :rule-classes :congruence)

    Theorem: lookup-stype-of-stype-fix-stype

    (defthm lookup-stype-of-stype-fix-stype
      (equal (lookup-stype n (stype-fix stype)
                           aignet)
             (lookup-stype n stype aignet)))

    Theorem: lookup-stype-stype-equiv-congruence-on-stype

    (defthm lookup-stype-stype-equiv-congruence-on-stype
      (implies (stype-equiv stype stype-equiv)
               (equal (lookup-stype n stype aignet)
                      (lookup-stype n stype-equiv aignet)))
      :rule-classes :congruence)

    Theorem: lookup-stype-of-node-list-fix-aignet

    (defthm lookup-stype-of-node-list-fix-aignet
      (equal (lookup-stype n stype (node-list-fix aignet))
             (lookup-stype n stype aignet)))

    Theorem: lookup-stype-node-list-equiv-congruence-on-aignet

    (defthm lookup-stype-node-list-equiv-congruence-on-aignet
      (implies (node-list-equiv aignet aignet-equiv)
               (equal (lookup-stype n stype aignet)
                      (lookup-stype n stype aignet-equiv)))
      :rule-classes :congruence)

    Theorem: stype-count-of-cdr-lookup-stype

    (defthm stype-count-of-cdr-lookup-stype
      (implies (< (nfix n) (stype-count stype aignet))
               (equal (stype-count stype
                                   (cdr (lookup-stype n stype aignet)))
                      (nfix n))))

    Theorem: car-of-lookup-stype

    (defthm car-of-lookup-stype
      (implies (< (nfix n) (stype-count stype aignet))
               (equal (stype (car (lookup-stype n stype aignet)))
                      (stype-fix stype))))

    Theorem: lookup-stype-in-bounds

    (defthm lookup-stype-in-bounds
      (iff (consp (lookup-stype n stype aignet))
           (< (nfix n)
              (stype-count stype aignet))))

    Theorem: lookup-stype-aignet-extension-p

    (defthm lookup-stype-aignet-extension-p
      (aignet-extension-p aignet (lookup-stype n stype aignet)))

    Theorem: lookup-stype-of-stype-count

    (defthm lookup-stype-of-stype-count
      (implies (and (aignet-extension-p new orig)
                    (equal (stype (car orig))
                           (stype-fix stype))
                    (not (equal (stype-fix stype)
                                (const-stype))))
               (equal (lookup-stype (stype-count stype (cdr orig))
                                    stype new)
                      (node-list-fix orig))))

    Theorem: lookup-stype-in-extension

    (defthm lookup-stype-in-extension
      (implies (and (aignet-extension-binding)
                    (consp (lookup-stype n stype orig)))
               (equal (lookup-stype n stype new)
                      (lookup-stype n stype orig))))

    Theorem: lookup-stype-in-extension-inverse

    (defthm lookup-stype-in-extension-inverse
      (implies (and (aignet-extension-bind-inverse)
                    (consp (lookup-stype n stype orig)))
               (equal (lookup-stype n stype orig)
                      (lookup-stype n stype new))))

    Theorem: stype-of-lookup-stype

    (defthm stype-of-lookup-stype
      (implies (consp (lookup-stype n stype aignet))
               (equal (stype (car (lookup-stype n stype aignet)))
                      (stype-fix stype))))

    Theorem: stype-of-lookup-stype-split

    (defthm stype-of-lookup-stype-split
      (equal (stype (car (lookup-stype n stype aignet)))
             (if (consp (lookup-stype n stype aignet))
                 (stype-fix stype)
               :const)))

    Theorem: aignet-extension-simplify-lookup-stype-when-counts-same

    (defthm aignet-extension-simplify-lookup-stype-when-counts-same
      (implies (and (aignet-extension-binding)
                    (equal (stype-count stype new)
                           (stype-count stype orig)))
               (equal (lookup-stype n stype new)
                      (lookup-stype n stype orig))))

    Theorem: aignet-extension-simplify-lookup-stype-inverse

    (defthm aignet-extension-simplify-lookup-stype-inverse
      (implies (and (aignet-extension-bind-inverse)
                    (consp (lookup-stype n stype orig)))
               (equal (lookup-stype n stype orig)
                      (lookup-stype n stype new))))

    Theorem: lookup-stype-out-of-bounds

    (defthm lookup-stype-out-of-bounds
      (implies (<= (stype-count stype aignet) (nfix n))
               (equal (lookup-stype n stype aignet)
                      nil)))

    Theorem: consp-of-lookup-stype

    (defthm consp-of-lookup-stype
      (implies (natp n)
               (equal (consp (lookup-stype n stype aignet))
                      (< (nfix n)
                         (stype-count stype aignet)))))

    Theorem: stype-count-of-lookup-stype-split

    (defthm stype-count-of-lookup-stype-split
      (equal (stype-count stype (lookup-stype n stype aignet))
             (if (< (nfix n) (stype-count stype aignet))
                 (+ 1 (nfix n))
               0)))

    Theorem: stype-count-of-lookup-stype

    (defthm stype-count-of-lookup-stype
      (implies (< (nfix n) (stype-count stype aignet))
               (equal (stype-count stype (lookup-stype n stype aignet))
                      (+ 1 (nfix n)))))