• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-with-tracking
        • Aignet-complete-copy
        • Aignet-eval
        • Semantics
        • Aignet-transforms
          • Aignet-comb-transforms
          • Aignet-m-assumption-n-output-transforms
            • M-assumption-n-output-comb-transform
              • M-assumption-n-output-comb-transform-fix
              • M-assumption-n-output-comb-transform-p
              • M-assumption-n-output-comb-transform-equiv
              • Apply-m-assumption-n-output-transform
            • Aignet-n-output-comb-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • M-assumption-n-output-comb-transform

    M-assumption-n-output-comb-transform-equiv

    Basic equivalence relation for m-assumption-n-output-comb-transform structures.

    Definitions and Theorems

    Function: m-assumption-n-output-comb-transform-equiv$inline

    (defun
     m-assumption-n-output-comb-transform-equiv$inline
     (x acl2::y)
     (declare
      (xargs
         :guard (and (m-assumption-n-output-comb-transform-p x)
                     (m-assumption-n-output-comb-transform-p acl2::y))))
     (equal (m-assumption-n-output-comb-transform-fix x)
            (m-assumption-n-output-comb-transform-fix acl2::y)))

    Theorem: m-assumption-n-output-comb-transform-equiv-is-an-equivalence

    (defthm
     m-assumption-n-output-comb-transform-equiv-is-an-equivalence
     (and
         (booleanp (m-assumption-n-output-comb-transform-equiv x y))
         (m-assumption-n-output-comb-transform-equiv x x)
         (implies (m-assumption-n-output-comb-transform-equiv x y)
                  (m-assumption-n-output-comb-transform-equiv y x))
         (implies (and (m-assumption-n-output-comb-transform-equiv x y)
                       (m-assumption-n-output-comb-transform-equiv y z))
                  (m-assumption-n-output-comb-transform-equiv x z)))
     :rule-classes (:equivalence))

    Theorem: m-assumption-n-output-comb-transform-equiv-implies-equal-m-assumption-n-output-comb-transform-fix-1

    (defthm
     m-assumption-n-output-comb-transform-equiv-implies-equal-m-assumption-n-output-comb-transform-fix-1
     (implies
          (m-assumption-n-output-comb-transform-equiv x x-equiv)
          (equal (m-assumption-n-output-comb-transform-fix x)
                 (m-assumption-n-output-comb-transform-fix x-equiv)))
     :rule-classes (:congruence))

    Theorem: m-assumption-n-output-comb-transform-fix-under-m-assumption-n-output-comb-transform-equiv

    (defthm
     m-assumption-n-output-comb-transform-fix-under-m-assumption-n-output-comb-transform-equiv
     (m-assumption-n-output-comb-transform-equiv
          (m-assumption-n-output-comb-transform-fix x)
          x)
     :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-m-assumption-n-output-comb-transform-fix-1-forward-to-m-assumption-n-output-comb-transform-equiv

    (defthm
     equal-of-m-assumption-n-output-comb-transform-fix-1-forward-to-m-assumption-n-output-comb-transform-equiv
     (implies (equal (m-assumption-n-output-comb-transform-fix x)
                     acl2::y)
              (m-assumption-n-output-comb-transform-equiv x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: equal-of-m-assumption-n-output-comb-transform-fix-2-forward-to-m-assumption-n-output-comb-transform-equiv

    (defthm
     equal-of-m-assumption-n-output-comb-transform-fix-2-forward-to-m-assumption-n-output-comb-transform-equiv
     (implies (equal x
                     (m-assumption-n-output-comb-transform-fix acl2::y))
              (m-assumption-n-output-comb-transform-equiv x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: m-assumption-n-output-comb-transform-equiv-of-m-assumption-n-output-comb-transform-fix-1-forward

    (defthm
     m-assumption-n-output-comb-transform-equiv-of-m-assumption-n-output-comb-transform-fix-1-forward
     (implies (m-assumption-n-output-comb-transform-equiv
                   (m-assumption-n-output-comb-transform-fix x)
                   acl2::y)
              (m-assumption-n-output-comb-transform-equiv x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: m-assumption-n-output-comb-transform-equiv-of-m-assumption-n-output-comb-transform-fix-2-forward

    (defthm
     m-assumption-n-output-comb-transform-equiv-of-m-assumption-n-output-comb-transform-fix-2-forward
     (implies (m-assumption-n-output-comb-transform-equiv
                   x
                   (m-assumption-n-output-comb-transform-fix acl2::y))
              (m-assumption-n-output-comb-transform-equiv x acl2::y))
     :rule-classes :forward-chaining)