• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
            • Node-fix
            • Node-p
            • Node-equiv
              • Gate-node->fanin1
              • Gate-node->fanin0
              • Co-node->fanin
              • Stype
              • Nxst-node
              • Node->type
              • Node->regp
              • Xor-node
              • And-node
              • Po-node
              • Proper-node-p
              • Reg-node
              • Pi-node
              • Const-node
            • Network
            • Combinational-type
            • Stypep
            • Typecode
          • Aignet-copy-init
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-with-tracking
          • Aignet-complete-copy
          • Aignet-eval
          • Semantics
          • Aignet-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Node

    Node-equiv

    Basic equivalence relation for node structures.

    Definitions and Theorems

    Function: node-equiv$inline

    (defun node-equiv$inline (x acl2::y)
           (declare (xargs :guard (and (node-p x) (node-p acl2::y))))
           (equal (node-fix x) (node-fix acl2::y)))

    Theorem: node-equiv-is-an-equivalence

    (defthm node-equiv-is-an-equivalence
            (and (booleanp (node-equiv x y))
                 (node-equiv x x)
                 (implies (node-equiv x y)
                          (node-equiv y x))
                 (implies (and (node-equiv x y) (node-equiv y z))
                          (node-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: node-equiv-implies-equal-node-fix-1

    (defthm node-equiv-implies-equal-node-fix-1
            (implies (node-equiv x x-equiv)
                     (equal (node-fix x) (node-fix x-equiv)))
            :rule-classes (:congruence))

    Theorem: node-fix-under-node-equiv

    (defthm node-fix-under-node-equiv
            (node-equiv (node-fix x) x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-node-fix-1-forward-to-node-equiv

    (defthm equal-of-node-fix-1-forward-to-node-equiv
            (implies (equal (node-fix x) acl2::y)
                     (node-equiv x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-node-fix-2-forward-to-node-equiv

    (defthm equal-of-node-fix-2-forward-to-node-equiv
            (implies (equal x (node-fix acl2::y))
                     (node-equiv x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: node-equiv-of-node-fix-1-forward

    (defthm node-equiv-of-node-fix-1-forward
            (implies (node-equiv (node-fix x) acl2::y)
                     (node-equiv x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: node-equiv-of-node-fix-2-forward

    (defthm node-equiv-of-node-fix-2-forward
            (implies (node-equiv x (node-fix acl2::y))
                     (node-equiv x acl2::y))
            :rule-classes :forward-chaining)