• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
            • Node-fix
            • Node-p
            • Node-equiv
            • Gate-node->fanin1
            • Gate-node->fanin0
            • Co-node->fanin
            • Stype
            • Nxst-node
            • Node->type
              • Node->regp
              • Xor-node
              • And-node
              • Po-node
              • Proper-node-p
              • Reg-node
              • Pi-node
              • Const-node
            • Network
            • Combinational-type
            • Stypep
            • Typecode
          • Aignet-copy-init
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-with-tracking
          • Aignet-complete-copy
          • Aignet-eval
          • Semantics
          • Aignet-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Node
    • Typecode

    Node->type

    Get the combinational typecode from a logical node.

    Signature
    (node->type node) → typecode
    Arguments
    node — Guard (node-p node).
    Returns
    typecode — Type (natp typecode).

    Definitions and Theorems

    Function: node->type

    (defun node->type (node)
           (declare (xargs :guard (node-p node)))
           (let ((__function__ 'node->type))
                (declare (ignorable __function__))
                (typecode (ctype (stype node)))))

    Theorem: natp-of-node->type

    (defthm natp-of-node->type
            (b* ((typecode (node->type node)))
                (natp typecode))
            :rule-classes :type-prescription)

    Theorem: node->type-of-node-fix-node

    (defthm node->type-of-node-fix-node
            (equal (node->type (node-fix node))
                   (node->type node)))

    Theorem: node->type-node-equiv-congruence-on-node

    (defthm node->type-node-equiv-congruence-on-node
            (implies (node-equiv node node-equiv)
                     (equal (node->type node)
                            (node->type node-equiv)))
            :rule-classes :congruence)