• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-with-tracking
        • Aignet-complete-copy
        • Aignet-eval
        • Semantics
          • Comb-equiv
          • Seq-equiv
          • Seq-equiv-init
          • Invals
          • Outs-comb-equiv
          • Nxsts-comb-equiv
          • Aignet-transforms
          • Aignet-simplify-marked
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Semantics

    Nxsts-comb-equiv

    Combinational equivalence of aignets, considering only next-states

    outs-comb-equiv says that two aignets' next-states are combinationally equivalent, that is, the next-states of corresponding registers evaluate to the same value under the same input/register assignment.

    Definitions and Theorems

    Theorem: nxsts-comb-equiv-necc

    (defthm nxsts-comb-equiv-necc
            (implies (nxsts-comb-equiv aignet aignet2)
                     (equal (equal (nxst-eval n invals regvals aignet)
                                   (nxst-eval n invals regvals aignet2))
                            t)))

    Theorem: nxsts-comb-equiv-implies-lit-eval-of-nxst

    (defthm
         nxsts-comb-equiv-implies-lit-eval-of-nxst
         (implies (nxsts-comb-equiv aignet aignet2)
                  (equal (equal (lit-eval (lookup-reg->nxst n aignet)
                                          invals regvals aignet)
                                (lit-eval (lookup-reg->nxst n aignet2)
                                          invals regvals aignet2))
                         t)))

    Theorem: nxsts-comb-equiv-is-an-equivalence

    (defthm nxsts-comb-equiv-is-an-equivalence
            (and (booleanp (nxsts-comb-equiv x y))
                 (nxsts-comb-equiv x x)
                 (implies (nxsts-comb-equiv x y)
                          (nxsts-comb-equiv y x))
                 (implies (and (nxsts-comb-equiv x y)
                               (nxsts-comb-equiv y z))
                          (nxsts-comb-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: nxsts-comb-equiv-implies-equal-nxst-eval-4

    (defthm nxsts-comb-equiv-implies-equal-nxst-eval-4
            (implies (nxsts-comb-equiv aignet aignet-equiv)
                     (equal (nxst-eval n invals regvals aignet)
                            (nxst-eval n invals regvals aignet-equiv)))
            :rule-classes (:congruence))

    Theorem: nxsts-comb-equiv-of-node-list-fix-aignet

    (defthm nxsts-comb-equiv-of-node-list-fix-aignet
            (equal (nxsts-comb-equiv (node-list-fix aignet)
                                     aignet2)
                   (nxsts-comb-equiv aignet aignet2)))

    Theorem: nxsts-comb-equiv-node-list-equiv-congruence-on-aignet

    (defthm nxsts-comb-equiv-node-list-equiv-congruence-on-aignet
            (implies (node-list-equiv aignet aignet-equiv)
                     (equal (nxsts-comb-equiv aignet aignet2)
                            (nxsts-comb-equiv aignet-equiv aignet2)))
            :rule-classes :congruence)

    Theorem: nxsts-comb-equiv-of-node-list-fix-aignet2

    (defthm nxsts-comb-equiv-of-node-list-fix-aignet2
            (equal (nxsts-comb-equiv aignet (node-list-fix aignet2))
                   (nxsts-comb-equiv aignet aignet2)))

    Theorem: nxsts-comb-equiv-node-list-equiv-congruence-on-aignet2

    (defthm nxsts-comb-equiv-node-list-equiv-congruence-on-aignet2
            (implies (node-list-equiv aignet2 aignet2-equiv)
                     (equal (nxsts-comb-equiv aignet aignet2)
                            (nxsts-comb-equiv aignet aignet2-equiv)))
            :rule-classes :congruence)