• Top
    • Documentation
      • Xdoc
        • Undocumented
          • Interp-flags
          • Simpcode
            • !simpcode->identity
            • !simpcode->choice
            • !simpcode->xor
            • !simpcode->neg
            • Simpcode-fix
            • Simpcode-p
            • Simpcode->identity
            • Simpcode->choice
            • Simpcode->xor
            • Simpcode->neg
          • Npn4
          • Cutinfo
          • Glcp-config-p
          • Glmc-config-p
          • Defsvtv-args
          • Vl-renaming-alist-p
          • Vcd-pathmap-p
          • Vcd-idxhash-p
          • *atc-exec-binary-strict-pure-rules*
          • Ecut-wirename-alistp
          • Context
          • Svtv-data-obj
          • Incremental-extremize-config-p
          • Ctrex-rule
          • Glmc-fsm-p
          • Eqbylbp-config-p
          • Proof-obligation
          • Cgraph-edge
          • Wcp-instance-rule-p
          • Wcp-witness-rule-p
          • Obligation-hyp
          • Vl-parsestate
          • Ecutnames-p
          • Te-args
          • Fn-info-elt-p
          • Truth-idx
          • Polarity4
          • Wcp-template-p
          • Phase-fsm-params
          • Fgl-casesplit-config
          • Cutscore
          • Truth6
          • Truth5
          • Truth4
          • Truth3
          • Propiso-info-p
          • Vl-rhs
          • Fgl-satlink-monolithic-sat-config
          • Constraint-tuple
          • Svexl-node
          • Ringosc3
          • Prof-entry-p
          • Constraint-tuple-p
          • Fgl-rune
          • Stv-spec-p
          • Svex-scc-consts
          • Base-fsm
          • Svtv-precompose-data
          • Pipeline-setup
          • Svl-module
          • Maybe-fgl-generic-rule
          • Frames
          • Vl-warningtree
          • Maybe-proof-obligation
          • Svtv-override-check
          • Fty-info
          • Prof-entry
          • Vl-maybe-rhs
          • Vl-parsed-ports
          • Svex-context
          • Maybe-svex
          • Maybe-simpcode
          • Maybe-rational
          • Flatten-res
          • Svex-reduce-config
          • Fty-type
          • Rewrite
          • Addnames-indices
          • Svtv*-phase
          • Fgl-binder-rune
          • Congruence-rule
          • Vl-ctxexpr
          • Rsh-of-concat-table
          • Chase-position
          • Hyp-tuple-p
          • Glcp-obj-ctrex-p
          • Glcp-bit-ctrex-p
          • Boundrw-subst-p
          • Svtv-cyclephase
          • Svar-split
          • Scopetree
          • Flatnorm-res
          • Fgl-rule
          • Constraint-rule
          • Vl-user-paramsetting
          • Svtv-composedata
          • Width-of-svex-extn
          • Array-fieldinfo-p
          • Wcp-example-app-p
          • Svtv*-input
          • Svtv-override-triple
          • Svtv-evaldata
          • Svex-override-triple
          • Svar-override-triple
          • Constraint-rule-p
          • Vl-parsed-ports
          • Svtv-assigns-override-config
          • Svex/index
          • Svl-env
          • Svl-aliasdb
          • Inverter
          • Fgl-binder-rule
          • Bvar-db-consistency-error
          • Wcp-lit-actions-p
          • Vcd-multivector-p
          • Svtv-fsm
          • Svexl
          • Constraint-instance
          • Vl-parsestate
          • Partsum-comp
          • Classname/params
          • Vcd-vector-p
          • Tmp-occ
          • Svl-occ
          • Svexllist
          • Svexl-alist
          • Integerp-of-svex-extn
          • Uninterpreted
          • Rw-pair
          • Vl-echar-raw
          • Vl-echar-raw
          • Use-set
          • Svtv-probe
          • Svex-phase-varname
          • Svex-cycle-varname
          • Svex-alistlist-eval-equiv
          • Svex-alist-eval-equiv!
          • Svex-alist-eval-equiv
          • Range
          • Phase-fsm-config
          • Constraint
          • Alias
          • Sig
          • Sandwich
          • Cgraph-derivstate
          • Candidate-assign
          • Svex-envlists-equivalent
          • Scalar-fieldinfo-p
          • Fgl-ev-congruence-rulelist-correct-p
          • N-outputs-dom-supergates-sweep-config
          • Truth4arr
          • Npn4arr
          • Flatnorm-setup
          • G-map-tag
          • Obs-sdom-array
          • Dom-supergates-sweep-config
          • Syndef::acid4
          • Svex-envlists-similar
          • Svex-alist-compose-equiv
          • Sym-prod
          • Fgl-congruence-rune
          • U32arr
          • Litarr
          • Aigtrans
          • Svexlist-eval-equiv
          • Svex-eval-equiv
          • N-outputs-unreachability-config
          • Unreachability-config
          • Keys-equiv
          • Vl-maybe-exprtype-list-p
          • Svex-alistlist
          • List-notin
          • Vcd-multivectorlist-p
          • Vcd-indexlist-p
          • Field-spec-listp
          • Alternative-spec-listp
          • Variable-listp
          • Prof-entrylist-p
          • Glcp-obj-ctrexlist-p
          • Pseudo-input-listp
          • Boundrw-substlist-p
          • Vcd-vectorlist-p
          • Neteval-ordering
          • Hyp-tuplelist-p
          • Symbol-path-list-p
          • Input-listp
          • Ecutname-list-p
          • Constraintlist
          • Fgl-object-bindings
          • Fgl-generic-rule
          • Eval-formula-equiv
          • Nonkeyword-listp
          • 4v-equiv
          • Svexl-node-array
          • Sig-path
          • Func-alist
          • Fgl-generic-rune
          • Fgl-ev-iff-equiv
          • Fgl-ev-equiv
          • Pseudo-term-subst
          • Nth-lit-equiv
          • Lits-equiv
          • Frames-equiv
          • Svex-s4env
          • Svex-env-keys-equiv
          • Svex-alist-same-keys
          • Svex-alist-keys-equiv
          • Pseudo-term-alist
          • Nth-nat-equiv
          • Nth-equiv
          • Faig-const-equiv
          • Bdd-equiv
          • Vl-user-paramsettings
          • Classname/params-unparam-map
          • Obligation-hyp-list
          • Svtv*-output-alist
          • Svtv*-input-alist
          • Svtv-probealist
          • Svtv-override-triplemap
          • Svtv-cyclephaselist
          • Svex/index-maybenat-alist
          • Svex-context-alist
          • Rangemap
          • Fnsym-svexlistlist-alist
          • Tmp-occ-alist
          • Svl-module-alist
          • Svexl-node-alist
          • Occ-name-alist
          • Integerp-of-svex-extn-list
          • Alias-alist
          • Special-char-alist
          • Fty-info-alist
          • Bfr-updates
          • Term-equivs
          • Term-bvars
          • Sig-table
          • Fgl-function-mode-alist
          • Ctrex-ruletable
          • Constraint-db
          • Congruence-rule-table
          • Cgraph-derivstates
          • Cgraph-alist
          • Cgraph
          • Casesplit-alist
          • Truthmap
          • Axi-map
          • Faig-fix-equiv
          • Vl-string/int-alist
          • Vl-reservedtable
          • Vl-echarlist
          • Vl-ctxexprlist
          • Vl-coredatatype-infolist
          • Vl-usertypes
          • Vl-coredatatype-infolist
          • Proof-obligation-list
          • Use-set-summaries
          • Svtv-rev-probealist
          • Svex/index-nat-alist
          • Svex/index-key-alist
          • Svex-key-alist
          • Svex-envlist
          • Svar-width-map
          • Svar-splittab
          • Svar-key-alist
          • Rsh-of-concat-alist
          • Path-alist
          • Name-alist
          • Address-alist
          • Width-of-svex-extn-list
          • Svl-occ-alist
          • Symbol-string-alist
          • Symbol-integer-alist
          • Sym-nat-alist
          • String-string-alist
          • Fty-types
          • Fty-field-alist
          • Any-table
          • Obj-alist
          • Nat-nat-alist
          • Constraint-instancelist
          • Congruence-rulelist
          • Calist
          • Bvar-db-consistency-errorlist
          • Var-counts-alist
          • Pseudo-var-list
          • Equiv-contextslist
          • Nat-val-alistp
          • Id-neg-alist
          • String-keyed-alist-p
          • Vl-reportcardkeylist
          • Partsumlist
          • Partsum-elt
          • Classname/paramslist
          • Vl-reportcardkeylist
          • Vl-locationlist
          • Vl-echarlist
          • Perm4-list
          • Svtv*-phaselist
          • Svtv-override-triplemaplist
          • Svtv-override-triplelist
          • Svtv-override-checklist
          • Svtv-name-lhs-map-list
          • Svtv-data$c-field-p
          • Svex/indexlist
          • Svexlistlist
          • Svex-override-triplelistlist
          • Svex-override-triplelist
          • Svex-contextlist
          • Svarlist-list
          • Svar-override-triplelistlist
          • Svar-override-triplelist
          • Rangelist
          • Chase-stack
          • Addresslist
          • 4veclistlist
          • Occ-name-list
          • Alias-lst
          • Word-list
          • Sig-path-list
          • Function-option-name-lst
          • Any-trace
          • Bfr-varnamelist
          • Aig-varlist
          • Scratch-nontagidxlist
          • Prof-entrylist
          • Interp-st-field-p
          • Fgl-runelist
          • Fgl-rulelist
          • Fgl-object-bindingslist
          • Fgl-congruence-runelist
          • Fgl-binder-runelist
          • Fgl-binder-rulelist
          • Ctrex-rulelist
          • Constraint-tuplelist
          • Cgraph-edgelist
          • Candidate-assigns
          • Rw-pairlist
          • Rewritelist
          • Equiv-contexts
          • Bindinglist
          • Pos-list
          • Obs-sdom-info-list
          • Cutinfolist
          • Bit-list
          • Axi-termlist
          • Axi-litlist
          • Symbol-pseudoterm-alist
          • Vl-user-paramsettings-mode-p
          • Ipasir-status-p
          • Ctrex-ruletype-p
          • String-stringlist-alist
          • St-hyp-method-p
          • Axi-op-p
          • Vl-opacity-p
          • Svar-overridetype-p
          • Scratchobj-kind-p
          • Logicman-field-p
          • Env$-field-p
          • *atc-apconvert-rules*
          • Axi
          • *smt-architecture*
          • *atc-object-designator-rules*
          • *vl-directions-kwds*
          • *vl-directions-kwd-alist*
          • Rlp-trees
        • Save
        • Defsection
        • Markup
        • Preprocessor
        • Emacs-links
        • Defxdoc
        • Katex-integration
        • Constructors
        • Entities
        • Save-rendered
        • Add-resource-directory
        • Defxdoc+
        • Testing
        • Order-subtopics
        • Save-rendered-event
        • Archive-matching-topics
        • Missing-parents
        • Archive-xdoc
        • Xdoc-extend
        • Set-default-parents
        • Defpointer
        • Defxdoc-raw
        • Xdoc-tests
        • Xdoc-prepend
        • Defsection-progn
        • Gen-xdoc-for-file
      • ACL2-doc
      • Pointers
      • Doc
      • Documentation-copyright
      • Args
      • ACL2-doc-summary
      • Finding-documentation
      • Broken-link
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
  • Undocumented

Simpcode

An 4-bit unsigned bitstruct type.

This is a bitstruct type introduced by fty::defbitstruct, represented as a unsigned 4-bit integer.

Fields
neg — bit
xor — bit
identity — bit
choice — bit

Definitions and Theorems

Function: simpcode-p

(defun simpcode-p (x)
       (declare (xargs :guard t))
       (let ((__function__ 'simpcode-p))
            (declare (ignorable __function__))
            (mbe :logic (unsigned-byte-p 4 x)
                 :exec (and (natp x) (< x 16)))))

Theorem: simpcode-p-when-unsigned-byte-p

(defthm simpcode-p-when-unsigned-byte-p
        (implies (unsigned-byte-p 4 x)
                 (simpcode-p x)))

Theorem: unsigned-byte-p-when-simpcode-p

(defthm unsigned-byte-p-when-simpcode-p
        (implies (simpcode-p x)
                 (unsigned-byte-p 4 x)))

Theorem: simpcode-p-compound-recognizer

(defthm simpcode-p-compound-recognizer
        (implies (simpcode-p x) (natp x))
        :rule-classes :compound-recognizer)

Function: simpcode-fix

(defun simpcode-fix (x)
       (declare (xargs :guard (simpcode-p x)))
       (let ((__function__ 'simpcode-fix))
            (declare (ignorable __function__))
            (mbe :logic (loghead 4 x) :exec x)))

Theorem: simpcode-p-of-simpcode-fix

(defthm simpcode-p-of-simpcode-fix
        (b* ((fty::fixed (simpcode-fix x)))
            (simpcode-p fty::fixed))
        :rule-classes :rewrite)

Theorem: simpcode-fix-when-simpcode-p

(defthm simpcode-fix-when-simpcode-p
        (implies (simpcode-p x)
                 (equal (simpcode-fix x) x)))

Function: simpcode-equiv$inline

(defun simpcode-equiv$inline (x acl2::y)
       (declare (xargs :guard (and (simpcode-p x)
                                   (simpcode-p acl2::y))))
       (equal (simpcode-fix x)
              (simpcode-fix acl2::y)))

Theorem: simpcode-equiv-is-an-equivalence

(defthm simpcode-equiv-is-an-equivalence
        (and (booleanp (simpcode-equiv x y))
             (simpcode-equiv x x)
             (implies (simpcode-equiv x y)
                      (simpcode-equiv y x))
             (implies (and (simpcode-equiv x y)
                           (simpcode-equiv y z))
                      (simpcode-equiv x z)))
        :rule-classes (:equivalence))

Theorem: simpcode-equiv-implies-equal-simpcode-fix-1

(defthm simpcode-equiv-implies-equal-simpcode-fix-1
        (implies (simpcode-equiv x x-equiv)
                 (equal (simpcode-fix x)
                        (simpcode-fix x-equiv)))
        :rule-classes (:congruence))

Theorem: simpcode-fix-under-simpcode-equiv

(defthm simpcode-fix-under-simpcode-equiv
        (simpcode-equiv (simpcode-fix x) x)
        :rule-classes (:rewrite :rewrite-quoted-constant))

Theorem: simpcode-fix-of-simpcode-fix-x

(defthm simpcode-fix-of-simpcode-fix-x
        (equal (simpcode-fix (simpcode-fix x))
               (simpcode-fix x)))

Theorem: simpcode-fix-simpcode-equiv-congruence-on-x

(defthm simpcode-fix-simpcode-equiv-congruence-on-x
        (implies (simpcode-equiv x x-equiv)
                 (equal (simpcode-fix x)
                        (simpcode-fix x-equiv)))
        :rule-classes :congruence)

Function: simpcode

(defun
     simpcode (neg xor identity choice)
     (declare (xargs :guard (and (bitp neg)
                                 (bitp xor)
                                 (bitp identity)
                                 (bitp choice))))
     (let ((__function__ 'simpcode))
          (declare (ignorable __function__))
          (b* ((neg (mbe :logic (bfix neg) :exec neg))
               (xor (mbe :logic (bfix xor) :exec xor))
               (identity (mbe :logic (bfix identity)
                              :exec identity))
               (choice (mbe :logic (bfix choice)
                            :exec choice)))
              (logapp 1 neg
                      (logapp 1 xor (logapp 1 identity choice))))))

Theorem: simpcode-p-of-simpcode

(defthm simpcode-p-of-simpcode
        (b* ((simpcode (simpcode neg xor identity choice)))
            (simpcode-p simpcode))
        :rule-classes :rewrite)

Theorem: simpcode-of-bfix-neg

(defthm simpcode-of-bfix-neg
        (equal (simpcode (bfix neg)
                         xor identity choice)
               (simpcode neg xor identity choice)))

Theorem: simpcode-bit-equiv-congruence-on-neg

(defthm simpcode-bit-equiv-congruence-on-neg
        (implies (bit-equiv neg neg-equiv)
                 (equal (simpcode neg xor identity choice)
                        (simpcode neg-equiv xor identity choice)))
        :rule-classes :congruence)

Theorem: simpcode-of-bfix-xor

(defthm simpcode-of-bfix-xor
        (equal (simpcode neg (bfix xor)
                         identity choice)
               (simpcode neg xor identity choice)))

Theorem: simpcode-bit-equiv-congruence-on-xor

(defthm simpcode-bit-equiv-congruence-on-xor
        (implies (bit-equiv xor xor-equiv)
                 (equal (simpcode neg xor identity choice)
                        (simpcode neg xor-equiv identity choice)))
        :rule-classes :congruence)

Theorem: simpcode-of-bfix-identity

(defthm simpcode-of-bfix-identity
        (equal (simpcode neg xor (bfix identity)
                         choice)
               (simpcode neg xor identity choice)))

Theorem: simpcode-bit-equiv-congruence-on-identity

(defthm simpcode-bit-equiv-congruence-on-identity
        (implies (bit-equiv identity identity-equiv)
                 (equal (simpcode neg xor identity choice)
                        (simpcode neg xor identity-equiv choice)))
        :rule-classes :congruence)

Theorem: simpcode-of-bfix-choice

(defthm simpcode-of-bfix-choice
        (equal (simpcode neg xor identity (bfix choice))
               (simpcode neg xor identity choice)))

Theorem: simpcode-bit-equiv-congruence-on-choice

(defthm simpcode-bit-equiv-congruence-on-choice
        (implies (bit-equiv choice choice-equiv)
                 (equal (simpcode neg xor identity choice)
                        (simpcode neg xor identity choice-equiv)))
        :rule-classes :congruence)

Function: simpcode-equiv-under-mask

(defun simpcode-equiv-under-mask (x x1 mask)
       (declare (xargs :guard (and (simpcode-p x)
                                   (simpcode-p x1)
                                   (integerp mask))))
       (let ((__function__ 'simpcode-equiv-under-mask))
            (declare (ignorable __function__))
            (fty::int-equiv-under-mask (simpcode-fix x)
                                       (simpcode-fix x1)
                                       mask)))

Theorem: simpcode-equiv-under-mask-of-simpcode-fix-x

(defthm simpcode-equiv-under-mask-of-simpcode-fix-x
        (equal (simpcode-equiv-under-mask (simpcode-fix x)
                                          x1 mask)
               (simpcode-equiv-under-mask x x1 mask)))

Theorem: simpcode-equiv-under-mask-simpcode-equiv-congruence-on-x

(defthm
     simpcode-equiv-under-mask-simpcode-equiv-congruence-on-x
     (implies (simpcode-equiv x x-equiv)
              (equal (simpcode-equiv-under-mask x x1 mask)
                     (simpcode-equiv-under-mask x-equiv x1 mask)))
     :rule-classes :congruence)

Theorem: simpcode-equiv-under-mask-of-simpcode-fix-x1

(defthm simpcode-equiv-under-mask-of-simpcode-fix-x1
        (equal (simpcode-equiv-under-mask x (simpcode-fix x1)
                                          mask)
               (simpcode-equiv-under-mask x x1 mask)))

Theorem: simpcode-equiv-under-mask-simpcode-equiv-congruence-on-x1

(defthm
     simpcode-equiv-under-mask-simpcode-equiv-congruence-on-x1
     (implies (simpcode-equiv x1 x1-equiv)
              (equal (simpcode-equiv-under-mask x x1 mask)
                     (simpcode-equiv-under-mask x x1-equiv mask)))
     :rule-classes :congruence)

Theorem: simpcode-equiv-under-mask-of-ifix-mask

(defthm simpcode-equiv-under-mask-of-ifix-mask
        (equal (simpcode-equiv-under-mask x x1 (ifix mask))
               (simpcode-equiv-under-mask x x1 mask)))

Theorem: simpcode-equiv-under-mask-int-equiv-congruence-on-mask

(defthm
     simpcode-equiv-under-mask-int-equiv-congruence-on-mask
     (implies (int-equiv mask mask-equiv)
              (equal (simpcode-equiv-under-mask x x1 mask)
                     (simpcode-equiv-under-mask x x1 mask-equiv)))
     :rule-classes :congruence)

Function: simpcode->neg

(defun simpcode->neg (x)
       (declare (xargs :guard (simpcode-p x)))
       (mbe :logic (let ((x (simpcode-fix x)))
                        (part-select x :low 0 :width 1))
            :exec (the (unsigned-byte 1)
                       (logand (the (unsigned-byte 1) 1)
                               (the (unsigned-byte 4) x)))))

Theorem: bitp-of-simpcode->neg

(defthm bitp-of-simpcode->neg
        (b* ((neg (simpcode->neg x)))
            (bitp neg))
        :rule-classes :rewrite)

Theorem: simpcode->neg-of-simpcode-fix-x

(defthm simpcode->neg-of-simpcode-fix-x
        (equal (simpcode->neg (simpcode-fix x))
               (simpcode->neg x)))

Theorem: simpcode->neg-simpcode-equiv-congruence-on-x

(defthm simpcode->neg-simpcode-equiv-congruence-on-x
        (implies (simpcode-equiv x x-equiv)
                 (equal (simpcode->neg x)
                        (simpcode->neg x-equiv)))
        :rule-classes :congruence)

Theorem: simpcode->neg-of-simpcode

(defthm simpcode->neg-of-simpcode
        (equal (simpcode->neg (simpcode neg xor identity choice))
               (bfix neg)))

Theorem: simpcode->neg-of-write-with-mask

(defthm
 simpcode->neg-of-write-with-mask
 (implies
  (and
   (fty::bitstruct-read-over-write-hyps x simpcode-equiv-under-mask)
   (simpcode-equiv-under-mask x acl2::y fty::mask)
   (equal (logand (lognot fty::mask) 1) 0))
  (equal (simpcode->neg x)
         (simpcode->neg acl2::y))))

Function: simpcode->xor

(defun
 simpcode->xor (x)
 (declare (xargs :guard (simpcode-p x)))
 (mbe
     :logic (let ((x (simpcode-fix x)))
                 (part-select x :low 1 :width 1))
     :exec (the (unsigned-byte 1)
                (logand (the (unsigned-byte 1) 1)
                        (the (unsigned-byte 3)
                             (ash (the (unsigned-byte 4) x) -1))))))

Theorem: bitp-of-simpcode->xor

(defthm bitp-of-simpcode->xor
        (b* ((xor (simpcode->xor x)))
            (bitp xor))
        :rule-classes :rewrite)

Theorem: simpcode->xor-of-simpcode-fix-x

(defthm simpcode->xor-of-simpcode-fix-x
        (equal (simpcode->xor (simpcode-fix x))
               (simpcode->xor x)))

Theorem: simpcode->xor-simpcode-equiv-congruence-on-x

(defthm simpcode->xor-simpcode-equiv-congruence-on-x
        (implies (simpcode-equiv x x-equiv)
                 (equal (simpcode->xor x)
                        (simpcode->xor x-equiv)))
        :rule-classes :congruence)

Theorem: simpcode->xor-of-simpcode

(defthm simpcode->xor-of-simpcode
        (equal (simpcode->xor (simpcode neg xor identity choice))
               (bfix xor)))

Theorem: simpcode->xor-of-write-with-mask

(defthm
 simpcode->xor-of-write-with-mask
 (implies
  (and
   (fty::bitstruct-read-over-write-hyps x simpcode-equiv-under-mask)
   (simpcode-equiv-under-mask x acl2::y fty::mask)
   (equal (logand (lognot fty::mask) 2) 0))
  (equal (simpcode->xor x)
         (simpcode->xor acl2::y))))

Function: simpcode->identity

(defun
 simpcode->identity (x)
 (declare (xargs :guard (simpcode-p x)))
 (mbe
     :logic (let ((x (simpcode-fix x)))
                 (part-select x :low 2 :width 1))
     :exec (the (unsigned-byte 1)
                (logand (the (unsigned-byte 1) 1)
                        (the (unsigned-byte 2)
                             (ash (the (unsigned-byte 4) x) -2))))))

Theorem: bitp-of-simpcode->identity

(defthm bitp-of-simpcode->identity
        (b* ((identity (simpcode->identity x)))
            (bitp identity))
        :rule-classes :rewrite)

Theorem: simpcode->identity-of-simpcode-fix-x

(defthm simpcode->identity-of-simpcode-fix-x
        (equal (simpcode->identity (simpcode-fix x))
               (simpcode->identity x)))

Theorem: simpcode->identity-simpcode-equiv-congruence-on-x

(defthm simpcode->identity-simpcode-equiv-congruence-on-x
        (implies (simpcode-equiv x x-equiv)
                 (equal (simpcode->identity x)
                        (simpcode->identity x-equiv)))
        :rule-classes :congruence)

Theorem: simpcode->identity-of-simpcode

(defthm
     simpcode->identity-of-simpcode
     (equal (simpcode->identity (simpcode neg xor identity choice))
            (bfix identity)))

Theorem: simpcode->identity-of-write-with-mask

(defthm
 simpcode->identity-of-write-with-mask
 (implies
  (and
   (fty::bitstruct-read-over-write-hyps x simpcode-equiv-under-mask)
   (simpcode-equiv-under-mask x acl2::y fty::mask)
   (equal (logand (lognot fty::mask) 4) 0))
  (equal (simpcode->identity x)
         (simpcode->identity acl2::y))))

Function: simpcode->choice

(defun
 simpcode->choice (x)
 (declare (xargs :guard (simpcode-p x)))
 (mbe
     :logic (let ((x (simpcode-fix x)))
                 (part-select x :low 3 :width 1))
     :exec (the (unsigned-byte 1)
                (logand (the (unsigned-byte 1) 1)
                        (the (unsigned-byte 1)
                             (ash (the (unsigned-byte 4) x) -3))))))

Theorem: bitp-of-simpcode->choice

(defthm bitp-of-simpcode->choice
        (b* ((choice (simpcode->choice x)))
            (bitp choice))
        :rule-classes :rewrite)

Theorem: simpcode->choice-of-simpcode-fix-x

(defthm simpcode->choice-of-simpcode-fix-x
        (equal (simpcode->choice (simpcode-fix x))
               (simpcode->choice x)))

Theorem: simpcode->choice-simpcode-equiv-congruence-on-x

(defthm simpcode->choice-simpcode-equiv-congruence-on-x
        (implies (simpcode-equiv x x-equiv)
                 (equal (simpcode->choice x)
                        (simpcode->choice x-equiv)))
        :rule-classes :congruence)

Theorem: simpcode->choice-of-simpcode

(defthm simpcode->choice-of-simpcode
        (equal (simpcode->choice (simpcode neg xor identity choice))
               (bfix choice)))

Theorem: simpcode->choice-of-write-with-mask

(defthm
 simpcode->choice-of-write-with-mask
 (implies
  (and
   (fty::bitstruct-read-over-write-hyps x simpcode-equiv-under-mask)
   (simpcode-equiv-under-mask x acl2::y fty::mask)
   (equal (logand (lognot fty::mask) 8) 0))
  (equal (simpcode->choice x)
         (simpcode->choice acl2::y))))

Theorem: simpcode-fix-in-terms-of-simpcode

(defthm simpcode-fix-in-terms-of-simpcode
        (equal (simpcode-fix x)
               (change-simpcode x)))

Function: !simpcode->neg

(defun
     !simpcode->neg (neg x)
     (declare (xargs :guard (and (bitp neg) (simpcode-p x))))
     (mbe :logic (b* ((neg (mbe :logic (bfix neg) :exec neg))
                      (x (simpcode-fix x)))
                     (part-install neg x :width 1 :low 0))
          :exec (the (unsigned-byte 4)
                     (logior (the (unsigned-byte 4)
                                  (logand (the (unsigned-byte 4) x)
                                          (the (signed-byte 2) -2)))
                             (the (unsigned-byte 1) neg)))))

Theorem: simpcode-p-of-!simpcode->neg

(defthm simpcode-p-of-!simpcode->neg
        (b* ((new-x (!simpcode->neg neg x)))
            (simpcode-p new-x))
        :rule-classes :rewrite)

Theorem: !simpcode->neg-of-bfix-neg

(defthm !simpcode->neg-of-bfix-neg
        (equal (!simpcode->neg (bfix neg) x)
               (!simpcode->neg neg x)))

Theorem: !simpcode->neg-bit-equiv-congruence-on-neg

(defthm !simpcode->neg-bit-equiv-congruence-on-neg
        (implies (bit-equiv neg neg-equiv)
                 (equal (!simpcode->neg neg x)
                        (!simpcode->neg neg-equiv x)))
        :rule-classes :congruence)

Theorem: !simpcode->neg-of-simpcode-fix-x

(defthm !simpcode->neg-of-simpcode-fix-x
        (equal (!simpcode->neg neg (simpcode-fix x))
               (!simpcode->neg neg x)))

Theorem: !simpcode->neg-simpcode-equiv-congruence-on-x

(defthm !simpcode->neg-simpcode-equiv-congruence-on-x
        (implies (simpcode-equiv x x-equiv)
                 (equal (!simpcode->neg neg x)
                        (!simpcode->neg neg x-equiv)))
        :rule-classes :congruence)

Theorem: !simpcode->neg-is-simpcode

(defthm !simpcode->neg-is-simpcode
        (equal (!simpcode->neg neg x)
               (change-simpcode x :neg neg)))

Theorem: simpcode->neg-of-!simpcode->neg

(defthm simpcode->neg-of-!simpcode->neg
        (b* ((?new-x (!simpcode->neg neg x)))
            (equal (simpcode->neg new-x)
                   (bfix neg))))

Theorem: !simpcode->neg-equiv-under-mask

(defthm !simpcode->neg-equiv-under-mask
        (b* ((?new-x (!simpcode->neg neg x)))
            (simpcode-equiv-under-mask new-x x -2)))

Function: !simpcode->xor

(defun
 !simpcode->xor (xor x)
 (declare (xargs :guard (and (bitp xor) (simpcode-p x))))
 (mbe
    :logic (b* ((xor (mbe :logic (bfix xor) :exec xor))
                (x (simpcode-fix x)))
               (part-install xor x :width 1 :low 1))
    :exec (the (unsigned-byte 4)
               (logior (the (unsigned-byte 4)
                            (logand (the (unsigned-byte 4) x)
                                    (the (signed-byte 3) -3)))
                       (the (unsigned-byte 2)
                            (ash (the (unsigned-byte 1) xor) 1))))))

Theorem: simpcode-p-of-!simpcode->xor

(defthm simpcode-p-of-!simpcode->xor
        (b* ((new-x (!simpcode->xor xor x)))
            (simpcode-p new-x))
        :rule-classes :rewrite)

Theorem: !simpcode->xor-of-bfix-xor

(defthm !simpcode->xor-of-bfix-xor
        (equal (!simpcode->xor (bfix xor) x)
               (!simpcode->xor xor x)))

Theorem: !simpcode->xor-bit-equiv-congruence-on-xor

(defthm !simpcode->xor-bit-equiv-congruence-on-xor
        (implies (bit-equiv xor xor-equiv)
                 (equal (!simpcode->xor xor x)
                        (!simpcode->xor xor-equiv x)))
        :rule-classes :congruence)

Theorem: !simpcode->xor-of-simpcode-fix-x

(defthm !simpcode->xor-of-simpcode-fix-x
        (equal (!simpcode->xor xor (simpcode-fix x))
               (!simpcode->xor xor x)))

Theorem: !simpcode->xor-simpcode-equiv-congruence-on-x

(defthm !simpcode->xor-simpcode-equiv-congruence-on-x
        (implies (simpcode-equiv x x-equiv)
                 (equal (!simpcode->xor xor x)
                        (!simpcode->xor xor x-equiv)))
        :rule-classes :congruence)

Theorem: !simpcode->xor-is-simpcode

(defthm !simpcode->xor-is-simpcode
        (equal (!simpcode->xor xor x)
               (change-simpcode x :xor xor)))

Theorem: simpcode->xor-of-!simpcode->xor

(defthm simpcode->xor-of-!simpcode->xor
        (b* ((?new-x (!simpcode->xor xor x)))
            (equal (simpcode->xor new-x)
                   (bfix xor))))

Theorem: !simpcode->xor-equiv-under-mask

(defthm !simpcode->xor-equiv-under-mask
        (b* ((?new-x (!simpcode->xor xor x)))
            (simpcode-equiv-under-mask new-x x -3)))

Function: !simpcode->identity

(defun
  !simpcode->identity (identity x)
  (declare (xargs :guard (and (bitp identity) (simpcode-p x))))
  (mbe :logic (b* ((identity (mbe :logic (bfix identity)
                                  :exec identity))
                   (x (simpcode-fix x)))
                  (part-install identity x
                                :width 1
                                :low 2))
       :exec (the (unsigned-byte 4)
                  (logior (the (unsigned-byte 4)
                               (logand (the (unsigned-byte 4) x)
                                       (the (signed-byte 4) -5)))
                          (the (unsigned-byte 3)
                               (ash (the (unsigned-byte 1) identity)
                                    2))))))

Theorem: simpcode-p-of-!simpcode->identity

(defthm simpcode-p-of-!simpcode->identity
        (b* ((new-x (!simpcode->identity identity x)))
            (simpcode-p new-x))
        :rule-classes :rewrite)

Theorem: !simpcode->identity-of-bfix-identity

(defthm !simpcode->identity-of-bfix-identity
        (equal (!simpcode->identity (bfix identity) x)
               (!simpcode->identity identity x)))

Theorem: !simpcode->identity-bit-equiv-congruence-on-identity

(defthm !simpcode->identity-bit-equiv-congruence-on-identity
        (implies (bit-equiv identity identity-equiv)
                 (equal (!simpcode->identity identity x)
                        (!simpcode->identity identity-equiv x)))
        :rule-classes :congruence)

Theorem: !simpcode->identity-of-simpcode-fix-x

(defthm !simpcode->identity-of-simpcode-fix-x
        (equal (!simpcode->identity identity (simpcode-fix x))
               (!simpcode->identity identity x)))

Theorem: !simpcode->identity-simpcode-equiv-congruence-on-x

(defthm !simpcode->identity-simpcode-equiv-congruence-on-x
        (implies (simpcode-equiv x x-equiv)
                 (equal (!simpcode->identity identity x)
                        (!simpcode->identity identity x-equiv)))
        :rule-classes :congruence)

Theorem: !simpcode->identity-is-simpcode

(defthm !simpcode->identity-is-simpcode
        (equal (!simpcode->identity identity x)
               (change-simpcode x :identity identity)))

Theorem: simpcode->identity-of-!simpcode->identity

(defthm simpcode->identity-of-!simpcode->identity
        (b* ((?new-x (!simpcode->identity identity x)))
            (equal (simpcode->identity new-x)
                   (bfix identity))))

Theorem: !simpcode->identity-equiv-under-mask

(defthm !simpcode->identity-equiv-under-mask
        (b* ((?new-x (!simpcode->identity identity x)))
            (simpcode-equiv-under-mask new-x x -5)))

Function: !simpcode->choice

(defun
   !simpcode->choice (choice x)
   (declare (xargs :guard (and (bitp choice) (simpcode-p x))))
   (mbe :logic (b* ((choice (mbe :logic (bfix choice) :exec choice))
                    (x (simpcode-fix x)))
                   (part-install choice x :width 1 :low 3))
        :exec (the (unsigned-byte 4)
                   (logior (the (unsigned-byte 4)
                                (logand (the (unsigned-byte 4) x)
                                        (the (signed-byte 5) -9)))
                           (the (unsigned-byte 4)
                                (ash (the (unsigned-byte 1) choice)
                                     3))))))

Theorem: simpcode-p-of-!simpcode->choice

(defthm simpcode-p-of-!simpcode->choice
        (b* ((new-x (!simpcode->choice choice x)))
            (simpcode-p new-x))
        :rule-classes :rewrite)

Theorem: !simpcode->choice-of-bfix-choice

(defthm !simpcode->choice-of-bfix-choice
        (equal (!simpcode->choice (bfix choice) x)
               (!simpcode->choice choice x)))

Theorem: !simpcode->choice-bit-equiv-congruence-on-choice

(defthm !simpcode->choice-bit-equiv-congruence-on-choice
        (implies (bit-equiv choice choice-equiv)
                 (equal (!simpcode->choice choice x)
                        (!simpcode->choice choice-equiv x)))
        :rule-classes :congruence)

Theorem: !simpcode->choice-of-simpcode-fix-x

(defthm !simpcode->choice-of-simpcode-fix-x
        (equal (!simpcode->choice choice (simpcode-fix x))
               (!simpcode->choice choice x)))

Theorem: !simpcode->choice-simpcode-equiv-congruence-on-x

(defthm !simpcode->choice-simpcode-equiv-congruence-on-x
        (implies (simpcode-equiv x x-equiv)
                 (equal (!simpcode->choice choice x)
                        (!simpcode->choice choice x-equiv)))
        :rule-classes :congruence)

Theorem: !simpcode->choice-is-simpcode

(defthm !simpcode->choice-is-simpcode
        (equal (!simpcode->choice choice x)
               (change-simpcode x :choice choice)))

Theorem: simpcode->choice-of-!simpcode->choice

(defthm simpcode->choice-of-!simpcode->choice
        (b* ((?new-x (!simpcode->choice choice x)))
            (equal (simpcode->choice new-x)
                   (bfix choice))))

Theorem: !simpcode->choice-equiv-under-mask

(defthm !simpcode->choice-equiv-under-mask
        (b* ((?new-x (!simpcode->choice choice x)))
            (simpcode-equiv-under-mask new-x x 7)))

Function: simpcode-debug

(defun
 simpcode-debug (x)
 (declare (xargs :guard (simpcode-p x)))
 (let ((__function__ 'simpcode-debug))
      (declare (ignorable __function__))
      (b* (((simpcode x)))
          (cons (cons 'neg x.neg)
                (cons (cons 'xor x.xor)
                      (cons (cons 'identity x.identity)
                            (cons (cons 'choice x.choice) nil)))))))

Theorem: simpcode-debug-of-simpcode-fix-x

(defthm simpcode-debug-of-simpcode-fix-x
        (equal (simpcode-debug (simpcode-fix x))
               (simpcode-debug x)))

Theorem: simpcode-debug-simpcode-equiv-congruence-on-x

(defthm simpcode-debug-simpcode-equiv-congruence-on-x
        (implies (simpcode-equiv x x-equiv)
                 (equal (simpcode-debug x)
                        (simpcode-debug x-equiv)))
        :rule-classes :congruence)

Subtopics

!simpcode->identity
Update the |COMMON-LISP|::|IDENTITY| field of a simpcode bit structure.
!simpcode->choice
Update the |AIGNET|::|CHOICE| field of a simpcode bit structure.
!simpcode->xor
Update the |ACL2|::|XOR| field of a simpcode bit structure.
!simpcode->neg
Update the |AIGNET|::|NEG| field of a simpcode bit structure.
Simpcode-fix
Fixing function for simpcode bit structures.
Simpcode-p
Recognizer for simpcode bit structures.
Simpcode->identity
Access the |COMMON-LISP|::|IDENTITY| field of a simpcode bit structure.
Simpcode->choice
Access the |AIGNET|::|CHOICE| field of a simpcode bit structure.
Simpcode->xor
Access the |ACL2|::|XOR| field of a simpcode bit structure.
Simpcode->neg
Access the |AIGNET|::|NEG| field of a simpcode bit structure.