• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
      • Io
      • Defttag
      • Sys-call
      • Save-exec
      • Quicklisp
      • Oslib
      • Std/io
      • Bridge
      • Clex
        • Example-lexer
          • Token-p
          • Lex-punctuation
          • Lex-id/keyword
          • Lex-string
          • Lex-comment
          • Lex-whitespace
          • Lex1
          • Lex-main
          • Lex*
          • Tokenlist-p
            • Tokenlist-p-basics
            • Idtail-char-p
            • Letter-char-p
            • Whitespace-char-p
            • Number-char-p
            • Tokentype-p
            • Lex*-exec
            • Newline-string
          • Sin
          • Matching-functions
          • Def-sin-progress
        • Tshell
        • Unsound-eval
        • Hacker
        • Startup-banner
        • Command-line
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Tokenlist-p

    Tokenlist-p-basics

    Basic theorems about tokenlist-p, generated by deflist.

    Definitions and Theorems

    Theorem: tokenlist-p-of-cons

    (defthm tokenlist-p-of-cons
            (equal (tokenlist-p (cons acl2::a acl2::x))
                   (and (token-p acl2::a)
                        (tokenlist-p acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-cdr-when-tokenlist-p

    (defthm tokenlist-p-of-cdr-when-tokenlist-p
            (implies (tokenlist-p (double-rewrite acl2::x))
                     (tokenlist-p (cdr acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-when-not-consp

    (defthm tokenlist-p-when-not-consp
            (implies (not (consp acl2::x))
                     (tokenlist-p acl2::x))
            :rule-classes ((:rewrite)))

    Theorem: token-p-of-car-when-tokenlist-p

    (defthm token-p-of-car-when-tokenlist-p
            (implies (tokenlist-p acl2::x)
                     (iff (token-p (car acl2::x))
                          (or (consp acl2::x) (token-p nil))))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-append

    (defthm tokenlist-p-of-append
            (equal (tokenlist-p (append acl2::a acl2::b))
                   (and (tokenlist-p acl2::a)
                        (tokenlist-p acl2::b)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-list-fix

    (defthm tokenlist-p-of-list-fix
            (equal (tokenlist-p (list-fix acl2::x))
                   (tokenlist-p acl2::x))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-sfix

    (defthm tokenlist-p-of-sfix
            (iff (tokenlist-p (set::sfix acl2::x))
                 (or (tokenlist-p acl2::x)
                     (not (set::setp acl2::x))))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-insert

    (defthm tokenlist-p-of-insert
            (iff (tokenlist-p (set::insert acl2::a acl2::x))
                 (and (tokenlist-p (set::sfix acl2::x))
                      (token-p acl2::a)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-delete

    (defthm tokenlist-p-of-delete
            (implies (tokenlist-p acl2::x)
                     (tokenlist-p (set::delete acl2::k acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-mergesort

    (defthm tokenlist-p-of-mergesort
            (iff (tokenlist-p (set::mergesort acl2::x))
                 (tokenlist-p (list-fix acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-union

    (defthm tokenlist-p-of-union
            (iff (tokenlist-p (set::union acl2::x acl2::y))
                 (and (tokenlist-p (set::sfix acl2::x))
                      (tokenlist-p (set::sfix acl2::y))))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-intersect-1

    (defthm tokenlist-p-of-intersect-1
            (implies (tokenlist-p acl2::x)
                     (tokenlist-p (set::intersect acl2::x acl2::y)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-intersect-2

    (defthm tokenlist-p-of-intersect-2
            (implies (tokenlist-p acl2::y)
                     (tokenlist-p (set::intersect acl2::x acl2::y)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-difference

    (defthm tokenlist-p-of-difference
            (implies (tokenlist-p acl2::x)
                     (tokenlist-p (set::difference acl2::x acl2::y)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-duplicated-members

    (defthm tokenlist-p-of-duplicated-members
            (implies (tokenlist-p acl2::x)
                     (tokenlist-p (acl2::duplicated-members acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-rev

    (defthm tokenlist-p-of-rev
            (equal (tokenlist-p (acl2::rev acl2::x))
                   (tokenlist-p (list-fix acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-rcons

    (defthm tokenlist-p-of-rcons
            (iff (tokenlist-p (acl2::rcons acl2::a acl2::x))
                 (and (token-p acl2::a)
                      (tokenlist-p (list-fix acl2::x))))
            :rule-classes ((:rewrite)))

    Theorem: token-p-when-member-equal-of-tokenlist-p

    (defthm token-p-when-member-equal-of-tokenlist-p
            (and (implies (and (member-equal acl2::a acl2::x)
                               (tokenlist-p acl2::x))
                          (token-p acl2::a))
                 (implies (and (tokenlist-p acl2::x)
                               (member-equal acl2::a acl2::x))
                          (token-p acl2::a)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-when-subsetp-equal

    (defthm tokenlist-p-when-subsetp-equal
            (and (implies (and (subsetp-equal acl2::x acl2::y)
                               (tokenlist-p acl2::y))
                          (tokenlist-p acl2::x))
                 (implies (and (tokenlist-p acl2::y)
                               (subsetp-equal acl2::x acl2::y))
                          (tokenlist-p acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-set-equiv-congruence

    (defthm tokenlist-p-set-equiv-congruence
            (implies (acl2::set-equiv acl2::x acl2::y)
                     (equal (tokenlist-p acl2::x)
                            (tokenlist-p acl2::y)))
            :rule-classes :congruence)

    Theorem: tokenlist-p-of-set-difference-equal

    (defthm
         tokenlist-p-of-set-difference-equal
         (implies (tokenlist-p acl2::x)
                  (tokenlist-p (set-difference-equal acl2::x acl2::y)))
         :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-intersection-equal-1

    (defthm tokenlist-p-of-intersection-equal-1
            (implies (tokenlist-p (double-rewrite acl2::x))
                     (tokenlist-p (intersection-equal acl2::x acl2::y)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-intersection-equal-2

    (defthm tokenlist-p-of-intersection-equal-2
            (implies (tokenlist-p (double-rewrite acl2::y))
                     (tokenlist-p (intersection-equal acl2::x acl2::y)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-union-equal

    (defthm tokenlist-p-of-union-equal
            (equal (tokenlist-p (union-equal acl2::x acl2::y))
                   (and (tokenlist-p (list-fix acl2::x))
                        (tokenlist-p (double-rewrite acl2::y))))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-take

    (defthm tokenlist-p-of-take
            (implies (tokenlist-p (double-rewrite acl2::x))
                     (iff (tokenlist-p (take acl2::n acl2::x))
                          (or (token-p nil)
                              (<= (nfix acl2::n) (len acl2::x)))))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-repeat

    (defthm tokenlist-p-of-repeat
            (iff (tokenlist-p (acl2::repeat acl2::n acl2::x))
                 (or (token-p acl2::x) (zp acl2::n)))
            :rule-classes ((:rewrite)))

    Theorem: token-p-of-nth-when-tokenlist-p

    (defthm token-p-of-nth-when-tokenlist-p
            (implies (and (tokenlist-p acl2::x)
                          (< (nfix acl2::n) (len acl2::x)))
                     (token-p (nth acl2::n acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-update-nth

    (defthm
        tokenlist-p-of-update-nth
        (implies (tokenlist-p (double-rewrite acl2::x))
                 (iff (tokenlist-p (update-nth acl2::n acl2::y acl2::x))
                      (and (token-p acl2::y)
                           (or (<= (nfix acl2::n) (len acl2::x))
                               (token-p nil)))))
        :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-butlast

    (defthm tokenlist-p-of-butlast
            (implies (tokenlist-p (double-rewrite acl2::x))
                     (tokenlist-p (butlast acl2::x acl2::n)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-nthcdr

    (defthm tokenlist-p-of-nthcdr
            (implies (tokenlist-p (double-rewrite acl2::x))
                     (tokenlist-p (nthcdr acl2::n acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-last

    (defthm tokenlist-p-of-last
            (implies (tokenlist-p (double-rewrite acl2::x))
                     (tokenlist-p (last acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-remove

    (defthm tokenlist-p-of-remove
            (implies (tokenlist-p acl2::x)
                     (tokenlist-p (remove acl2::a acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: tokenlist-p-of-revappend

    (defthm tokenlist-p-of-revappend
            (equal (tokenlist-p (revappend acl2::x acl2::y))
                   (and (tokenlist-p (list-fix acl2::x))
                        (tokenlist-p acl2::y)))
            :rule-classes ((:rewrite)))