Search-engine friendly clone of the
ACL2 documentation
.
Top
Documentation
Books
Recursion-and-induction
Boolean-reasoning
Debugging
Projects
Std
Proof-automation
Macro-libraries
ACL2
Theories
Rule-classes
Proof-builder
Hons-and-memoization
Events
History
Parallelism
Programming
Defun
Declare
System-utilities
Stobj
State
Memoize
Mbe
Io
Apply$
Defpkg
Mutual-recursion
Loop$
Programming-with-state
Arrays
Characters
Time$
Loop$-primer
Fast-alists
Defmacro
Defconst
Evaluation
Guard
Equality-variants
Compilation
Hons
ACL2-built-ins
Developers-guide
System-attachments
Advanced-features
Set-check-invariant-risk
Numbers
Posp
Natp
Unsigned-byte-p
+
Bitp
Zero-test-idioms
Nat-listp
Integerp
<
*
Zp
-
Signed-byte-p
Logbitp
Expt
Ash
Rationalp
Sharp-f-reader
=
<=
Logand
Floor
Random$
Nfix
Complex
Numbers-introduction
Truncate
Code-char
Integer-length
Zip
Logior
Sharp-u-reader
Char-code
Unary--
Integer-listp
Mod
Boole$
/
Logxor
Lognot
Integer-range-p
Ifix
ACL2-numberp
Mod-expt
Ceiling
Round
Logeqv
Explode-nonnegative-integer
Max
Evenp
Zerop
Abs
Nonnegative-integer-quotient
Fix
Allocate-fixnum-range
1+
Pos-listp
Signum
Rem
Real/rationalp
Rational-listp
Rfix
>=
>
Logcount
ACL2-number-listp
/=
Unary-/
Complex/complex-rationalp
Logtest
Logandc1
Logorc1
Logandc2
1-
Numerator
Logorc2
Denominator
The-number
Realfix
Complex-rationalp
Min
Lognor
Zpf
Oddp
Minusp
Lognand
Imagpart
Conjugate
Int=
Realpart
Plusp
Irrelevant-formals
Efficiency
Introduction-to-programming-in-ACL2-for-those-who-know-lisp
Redefining-programs
Lists
Invariant-risk
Errors
Defabbrev
Conses
Alists
Set-register-invariant-risk
Strings
Program-wrapper
Get-internal-time
Basics
Packages
Defmacro-untouchable
Primitive
<<
Revert-world
Set-duplicate-keys-action
Unmemoize
Symbols
Def-list-constructor
Easy-simplify-term
Defiteration
Defopen
Sleep
Start-here
Real
Debugging
Miscellaneous
Output-controls
Macros
Interfacing-tools
Interfacing-tools
Hardware-verification
Software-verification
Testing-utilities
Math
Numbers
ACL2-built-ins
Integerp
Recognizer for whole numbers
(
integerp
x)
is true if and only if
x
is an integer.