• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Hons-and-memoization
      • Events
      • History
      • Parallelism
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Memoize
        • Mbe
        • Io
        • Apply$
        • Defpkg
        • Mutual-recursion
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Loop$-primer
        • Fast-alists
        • Defmacro
        • Defconst
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
          • Natp
          • Unsigned-byte-p
          • Posp
          • +
          • Bitp
          • Zero-test-idioms
          • Nat-listp
          • Integerp
          • <
            • *
            • Zp
            • -
            • Signed-byte-p
            • Logbitp
            • Expt
            • Ash
            • Rationalp
            • Sharp-f-reader
            • Logand
            • =
            • <=
            • Floor
            • Random$
            • Nfix
            • Truncate
            • Complex
            • Numbers-introduction
            • Code-char
            • Integer-length
            • Zip
            • Logior
            • Sharp-u-reader
            • Char-code
            • Unary--
            • Integer-listp
            • Boole$
            • /
            • Mod
            • Logxor
            • Lognot
            • Integer-range-p
            • Ifix
            • ACL2-numberp
            • Ceiling
            • Mod-expt
            • Round
            • Logeqv
            • Explode-nonnegative-integer
            • Max
            • Evenp
            • Nonnegative-integer-quotient
            • Zerop
            • Abs
            • Fix
            • Allocate-fixnum-range
            • Rem
            • 1+
            • Pos-listp
            • Signum
            • Real/rationalp
            • Rational-listp
            • Rfix
            • >=
            • >
            • Logcount
            • ACL2-number-listp
            • /=
            • Unary-/
            • Complex/complex-rationalp
            • Logtest
            • Logandc1
            • Logorc1
            • Logandc2
            • 1-
            • Numerator
            • Logorc2
            • Denominator
            • The-number
            • Realfix
            • Complex-rationalp
            • Min
            • Lognor
            • Zpf
            • Oddp
            • Minusp
            • Lognand
            • Imagpart
            • Conjugate
            • Int=
            • Realpart
            • Plusp
          • Irrelevant-formals
          • Efficiency
          • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
          • Redefining-programs
          • Lists
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Defmacro-untouchable
          • Primitive
          • <<
          • Revert-world
          • Set-duplicate-keys-action
          • Unmemoize
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Defopen
          • Sleep
        • Start-here
        • Real
        • Debugging
        • Miscellaneous
        • Output-controls
        • Macros
        • Interfacing-tools
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Numbers
    • ACL2-built-ins

    <

    Less-than

    Completion Axiom (completion-of-<):

    (equal (< x y)
           (if (and (rationalp x)
                    (rationalp y))
               (< x y)
             (let ((x1 (if (acl2-numberp x) x 0))
                   (y1 (if (acl2-numberp y) y 0)))
               (or (< (realpart x1) (realpart y1))
                   (and (equal (realpart x1) (realpart y1))
                        (< (imagpart x1) (imagpart y1)))))))

    Guard for (< x y):

    (and (rationalp x) (rationalp y))

    Notice that like all arithmetic functions, < treats non-numeric inputs as 0. Thus, the following are theorems.

    (thm (equal (< (fix x) y) (< x y)))
    (thm (equal (< x (fix y)) (< x y)))

    This function has the usual meaning on the rational numbers, but is extended to the complex rational numbers using the lexicographic order: first the real parts are compared, and if they are equal, then the imaginary parts are compared.