• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Error-checking
        • Apt
        • Abnf
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Prime-field-constraint-systems
        • Soft
        • Bv
        • Imp-language
        • Event-macros
        • Bitcoin
        • Ethereum
          • Mmp-trees
          • Semaphore
          • Database
            • Databasep
            • Database-fix
              • Database-equiv
            • Cryptography
            • Rlp
            • Transactions
            • Hex-prefix
            • Basics
            • Addresses
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Java
          • C
          • Syntheto
          • Number-theory
          • Cryptography
          • Lists-light
          • File-io-light
          • Json
          • Built-ins
          • Solidity
          • Axe
          • Std-extensions
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Execloader
        • Axe
      • Testing-utilities
      • Math
    • Database

    Database-fix

    (database-fix x) is a usual ACL2::fty omap fixing function.

    Signature
    (database-fix x) → *
    Arguments
    x — Guard (databasep x).

    Definitions and Theorems

    Function: database-fix

    (defun database-fix (x)
           (declare (xargs :guard (databasep x)))
           (mbe :logic (if (databasep x) x nil)
                :exec x))

    Theorem: databasep-of-database-fix

    (defthm databasep-of-database-fix
            (databasep (database-fix x)))

    Theorem: database-fix-when-databasep

    (defthm database-fix-when-databasep
            (implies (databasep x)
                     (equal (database-fix x) x)))

    Theorem: empty-database-fix

    (defthm empty-database-fix
            (implies (or (omap::empty x) (not (databasep x)))
                     (omap::empty (database-fix x))))

    Theorem: empty-of-database-fix-to-not-database-or-empty

    (defthm empty-of-database-fix-to-not-database-or-empty
            (equal (omap::empty (database-fix x))
                   (or (not (databasep x))
                       (omap::empty x))))

    Function: database-equiv$inline

    (defun database-equiv$inline (acl2::x acl2::y)
           (declare (xargs :guard (and (databasep acl2::x)
                                       (databasep acl2::y))))
           (equal (database-fix acl2::x)
                  (database-fix acl2::y)))

    Theorem: database-equiv-is-an-equivalence

    (defthm database-equiv-is-an-equivalence
            (and (booleanp (database-equiv x y))
                 (database-equiv x x)
                 (implies (database-equiv x y)
                          (database-equiv y x))
                 (implies (and (database-equiv x y)
                               (database-equiv y z))
                          (database-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: database-equiv-implies-equal-database-fix-1

    (defthm database-equiv-implies-equal-database-fix-1
            (implies (database-equiv acl2::x x-equiv)
                     (equal (database-fix acl2::x)
                            (database-fix x-equiv)))
            :rule-classes (:congruence))

    Theorem: database-fix-under-database-equiv

    (defthm database-fix-under-database-equiv
            (database-equiv (database-fix acl2::x)
                            acl2::x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-database-fix-1-forward-to-database-equiv

    (defthm equal-of-database-fix-1-forward-to-database-equiv
            (implies (equal (database-fix acl2::x) acl2::y)
                     (database-equiv acl2::x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-database-fix-2-forward-to-database-equiv

    (defthm equal-of-database-fix-2-forward-to-database-equiv
            (implies (equal acl2::x (database-fix acl2::y))
                     (database-equiv acl2::x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: database-equiv-of-database-fix-1-forward

    (defthm database-equiv-of-database-fix-1-forward
            (implies (database-equiv (database-fix acl2::x)
                                     acl2::y)
                     (database-equiv acl2::x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: database-equiv-of-database-fix-2-forward

    (defthm database-equiv-of-database-fix-2-forward
            (implies (database-equiv acl2::x (database-fix acl2::y))
                     (database-equiv acl2::x acl2::y))
            :rule-classes :forward-chaining)