• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
      • X86isa
      • Execloader
        • Elf-reader
        • Mach-o-reader
        • Merge-first-split-bytes
        • Split-bytes
          • Charlist->bytes
          • Take-till-zero
          • Merge-bytes
          • Bytes->charlist
          • Bytes->string
          • String->bytes
        • Axe
      • Testing-utilities
      • Math
    • Execloader

    Split-bytes

    Split bytes into two lists, where first part has n elements

    Signature
    (split-bytes n bytes) → (mv one two)
    Arguments
    n — Guard (natp n).
    bytes — Guard (byte-listp bytes).
    Returns
    one — Type (byte-listp one), given (byte-listp bytes).
    two — Type (byte-listp two), given (byte-listp bytes).

    Definitions and Theorems

    Function: split-bytes

    (defun
     split-bytes (n bytes)
     (declare (xargs :guard (and (natp n) (byte-listp bytes))))
     (let
      ((__function__ 'split-bytes))
      (declare (ignorable __function__))
      (b*
       ((rest (nthcdr n bytes))
        ((unless (<= n (len bytes)))
         (prog2$
          (raise
           "Not enough bytes to split into two by ~x0! (len bytes): ~x1"
           n (len bytes))
          (mv (make-list n :initial-element 0)
              rest)))
        (first (take n bytes)))
       (mv first rest))))

    Theorem: byte-listp-of-split-bytes.one

    (defthm byte-listp-of-split-bytes.one
            (implies (byte-listp bytes)
                     (b* (((mv ?one ?two) (split-bytes n bytes)))
                         (byte-listp one)))
            :rule-classes :rewrite)

    Theorem: byte-listp-of-split-bytes.two

    (defthm byte-listp-of-split-bytes.two
            (implies (byte-listp bytes)
                     (b* (((mv ?one ?two) (split-bytes n bytes)))
                         (byte-listp two)))
            :rule-classes :rewrite)

    Theorem: len-of-mv-nth-0-split-bytes

    (defthm len-of-mv-nth-0-split-bytes
            (b* (((mv ?one ?two) (split-bytes n bytes)))
                (equal (len one) (nfix n))))

    Theorem: len-of-mv-nth-1-split-bytes

    (defthm len-of-mv-nth-1-split-bytes
            (b* (((mv ?one ?two) (split-bytes n bytes)))
                (equal (len two)
                       (nfix (- (len bytes) (nfix n))))))