• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
      • Apt
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Legacy-defrstobj
      • Prime-field-constraint-systems
      • Proof-checker-array
      • Soft
      • Rp-rewriter
      • Farray
      • Instant-runoff-voting
        • Fairness-criteria
        • Candidate-with-least-nth-place-votes
        • Eliminate-candidate
        • First-choice-of-majority-p
        • Candidate-ids
          • Sorting-candidate-ids
        • Irv
        • Create-nth-choice-count-alist
        • Irv-alt
        • Irv-ballot-p
        • Majority
        • Number-of-candidates
        • List-elements-equal
        • Number-of-voters
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Taspi
      • Bitcoin
      • Des
      • Ethereum
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Bigmem
      • Regex
      • ACL2-programming-language
      • Java
      • C
      • Jfkr
      • X86isa
      • Equational
      • Cryptography
      • Where-do-i-place-my-book
      • Json
      • Built-ins
      • Execloader
      • Solidity
      • Paco
      • Concurrent-programs
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
  • Instant-runoff-voting

Candidate-ids

Get a sorted list of candidate IDs currently in the election

Signature
(candidate-ids xs) → cids
Arguments
xs — Guard (irv-ballot-p xs).
Returns
cids — Type (true-listp cids).

Definitions and Theorems

Function: candidate-ids

(defun
  candidate-ids (xs)
  (declare (xargs :guard (irv-ballot-p xs)))
  (let ((__function__ 'candidate-ids))
       (declare (ignorable __function__))
       (acl2::<-sort (remove-duplicates-equal (acl2::flatten xs)))))

Theorem: true-listp-of-candidate-ids

(defthm true-listp-of-candidate-ids
        (b* ((cids (candidate-ids xs)))
            (true-listp cids))
        :rule-classes :type-prescription)

Theorem: nat-listp-of-candidate-ids

(defthm nat-listp-of-candidate-ids
        (implies (irv-ballot-p xs)
                 (nat-listp (candidate-ids xs))))

Theorem: consp-of-candidate-ids

(defthm consp-of-candidate-ids
        (implies (and (non-empty-true-list-listp xs)
                      (consp xs))
                 (consp (candidate-ids xs)))
        :rule-classes :type-prescription)

Theorem: subset-of-candidate-ids-cdr

(defthm subset-of-candidate-ids-cdr
        (subsetp-equal (candidate-ids (cdr xs))
                       (candidate-ids xs)))

Theorem: nat-listp-and-subsetp-equal

(defthm nat-listp-and-subsetp-equal
        (implies (and (subsetp-equal x y)
                      (true-listp x)
                      (nat-listp y))
                 (nat-listp x)))

Theorem: nat-listp-and-set-equiv

(defthm nat-listp-and-set-equiv
        (implies (and (acl2::set-equiv x y)
                      (true-listp x)
                      (true-listp y))
                 (iff (nat-listp x) (nat-listp y))))

Theorem: duplicity-of-element-in-no-duplicatesp-list

(defthm duplicity-of-element-in-no-duplicatesp-list
        (implies (and (member-equal e x)
                      (no-duplicatesp-equal x))
                 (equal (acl2::duplicity e x) 1)))

Theorem: cdr-no-duplicatesp-equal

(defthm cdr-no-duplicatesp-equal
        (implies (no-duplicatesp-equal xs)
                 (no-duplicatesp-equal (cdr xs))))

Theorem: no-duplicatesp-equal-of-remove-equal

(defthm no-duplicatesp-equal-of-remove-equal
        (implies (no-duplicatesp-equal x)
                 (no-duplicatesp-equal (remove-equal id x))))

Theorem: remove-equal-car-lst-no-duplicatesp-equal

(defthm remove-equal-car-lst-no-duplicatesp-equal
        (implies (and (no-duplicatesp-equal lst)
                      (true-listp lst))
                 (equal (remove-equal (car lst) (cdr lst))
                        (cdr lst))))

Theorem: subset-member-remove-equal-lemma

(defthm subset-member-remove-equal-lemma
        (implies (and (subsetp-equal y (cons e x))
                      (member-equal e y))
                 (subsetp-equal (remove-equal e y) x)))

Theorem: equal-len-of-no-duplicates-set-equivs

(defthm equal-len-of-no-duplicates-set-equivs
        (implies (and (acl2::set-equiv x y)
                      (no-duplicatesp-equal x)
                      (no-duplicatesp-equal y))
                 (equal (len x) (len y))))

Theorem: candidate-ids-nat-listp-smaller

(defthm candidate-ids-nat-listp-smaller
        (implies (nat-listp (candidate-ids xs))
                 (nat-listp (candidate-ids (cdr xs)))))

Theorem: subset-of-flatten

(defthm subset-of-flatten
        (implies (subsetp-equal ys xs)
                 (subsetp-equal (acl2::flatten ys)
                                (acl2::flatten xs))))

Theorem: subsetp-of-irv-ballots-implies-subsetp-of-candidate-ids

(defthm subsetp-of-irv-ballots-implies-subsetp-of-candidate-ids
        (implies (subsetp-equal ys xs)
                 (subsetp-equal (candidate-ids ys)
                                (candidate-ids xs))))

Theorem: no-duplicates-in-candidate-ids

(defthm no-duplicates-in-candidate-ids
        (no-duplicatesp-equal (candidate-ids xs)))

Subtopics

Sorting-candidate-ids