• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Error-checking
        • Apt
        • Abnf
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Prime-field-constraint-systems
          • Proof-support
          • R1cs-subset
          • Semantics
          • Abstract-syntax
          • Well-formedness
            • Definition-list-wfp
            • Definition-wfp
            • Constraint-wfp
            • Constraint-list-wfp
              • System-wfp
            • Abstract-syntax-operations
            • R1cs-bridge
            • Concrete-syntax
            • Prime-field-library-extensions
            • R1cs-library-extensions
          • Soft
          • Bv
          • Imp-language
          • Event-macros
          • Bitcoin
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Java
          • C
          • Syntheto
          • Number-theory
          • Cryptography
          • Lists-light
          • File-io-light
          • Json
          • Built-ins
          • Solidity
          • Axe
          • Std-extensions
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Execloader
        • Axe
      • Testing-utilities
      • Math
    • Well-formedness

    Constraint-list-wfp

    Check if a list of constraints is well-formed, with respect to a list of relation definitions.

    Signature
    (constraint-list-wfp constrs defs) → yes/no
    Arguments
    constrs — Guard (constraint-listp constrs).
    defs — Guard (definition-listp defs).
    Returns
    yes/no — Type (booleanp yes/no).

    A list of constraints is well-formed iff all the constraints are well-formed.

    Definitions and Theorems

    Function: constraint-list-wfp

    (defun constraint-list-wfp (constrs defs)
           (declare (xargs :guard (and (constraint-listp constrs)
                                       (definition-listp defs))))
           (let ((__function__ 'constraint-list-wfp))
                (declare (ignorable __function__))
                (or (endp constrs)
                    (and (constraint-wfp (car constrs) defs)
                         (constraint-list-wfp (cdr constrs)
                                              defs)))))

    Theorem: booleanp-of-constraint-list-wfp

    (defthm booleanp-of-constraint-list-wfp
            (b* ((yes/no (constraint-list-wfp constrs defs)))
                (booleanp yes/no))
            :rule-classes :rewrite)

    Theorem: constraint-list-wfp-of-constraint-list-fix-constrs

    (defthm constraint-list-wfp-of-constraint-list-fix-constrs
            (equal (constraint-list-wfp (constraint-list-fix constrs)
                                        defs)
                   (constraint-list-wfp constrs defs)))

    Theorem: constraint-list-wfp-constraint-list-equiv-congruence-on-constrs

    (defthm
         constraint-list-wfp-constraint-list-equiv-congruence-on-constrs
         (implies (constraint-list-equiv constrs constrs-equiv)
                  (equal (constraint-list-wfp constrs defs)
                         (constraint-list-wfp constrs-equiv defs)))
         :rule-classes :congruence)

    Theorem: constraint-list-wfp-of-definition-list-fix-defs

    (defthm
         constraint-list-wfp-of-definition-list-fix-defs
         (equal (constraint-list-wfp constrs (definition-list-fix defs))
                (constraint-list-wfp constrs defs)))

    Theorem: constraint-list-wfp-definition-list-equiv-congruence-on-defs

    (defthm constraint-list-wfp-definition-list-equiv-congruence-on-defs
            (implies (definition-list-equiv defs defs-equiv)
                     (equal (constraint-list-wfp constrs defs)
                            (constraint-list-wfp constrs defs-equiv)))
            :rule-classes :congruence)